Temporal dendritic heterogeneity incorporated with spiking neural networks for learning multi-timescale dynamics
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-44614-z
Download full text from publisher
References listed on IDEAS
- Attila Losonczy & Judit K. Makara & Jeffrey C. Magee, 2008. "Compartmentalized dendritic plasticity and input feature storage in neurons," Nature, Nature, vol. 452(7186), pages 436-441, March.
- Michalis Pagkalos & Spyridon Chavlis & Panayiota Poirazi, 2023. "Introducing the Dendrify framework for incorporating dendrites to spiking neural networks," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Kwabena Boahen, 2022. "Dendrocentric learning for synthetic intelligence," Nature, Nature, vol. 612(7938), pages 43-50, December.
- Rong Zhao & Zheyu Yang & Hao Zheng & Yujie Wu & Faqiang Liu & Zhenzhi Wu & Lukai Li & Feng Chen & Seng Song & Jun Zhu & Wenli Zhang & Haoyu Huang & Mingkun Xu & Kaifeng Sheng & Qianbo Yin & Jing Pei &, 2022. "A framework for the general design and computation of hybrid neural networks," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Guillaume Bellec & Franz Scherr & Anand Subramoney & Elias Hajek & Darjan Salaj & Robert Legenstein & Wolfgang Maass, 2020. "A solution to the learning dilemma for recurrent networks of spiking neurons," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
- Jacopo Bono & Claudia Clopath, 2017. "Modeling somatic and dendritic spike mediated plasticity at the single neuron and network level," Nature Communications, Nature, vol. 8(1), pages 1-17, December.
- Nicolas Perez-Nieves & Vincent C. H. Leung & Pier Luigi Dragotti & Dan F. M. Goodman, 2021. "Neural heterogeneity promotes robust learning," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
- Alexandra Tzilivaki & George Kastellakis & Panayiota Poirazi, 2019. "Challenging the point neuron dogma: FS basket cells as 2-stage nonlinear integrators," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Michalis Pagkalos & Spyridon Chavlis & Panayiota Poirazi, 2023. "Introducing the Dendrify framework for incorporating dendrites to spiking neural networks," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Simone D’Agostino & Filippo Moro & Tristan Torchet & Yiğit Demirağ & Laurent Grenouillet & Niccolò Castellani & Giacomo Indiveri & Elisa Vianello & Melika Payvand, 2024. "DenRAM: neuromorphic dendritic architecture with RRAM for efficient temporal processing with delays," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Linda Judák & Balázs Chiovini & Gábor Juhász & Dénes Pálfi & Zsolt Mezriczky & Zoltán Szadai & Gergely Katona & Benedek Szmola & Katalin Ócsai & Bernadett Martinecz & Anna Mihály & Ádám Dénes & Bálint, 2022. "Sharp-wave ripple doublets induce complex dendritic spikes in parvalbumin interneurons in vivo," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Joshua M. Diamond & Julio I. Chapeton & Weizhen Xie & Samantha N. Jackson & Sara K. Inati & Kareem A. Zaghloul, 2024. "Focal seizures induce spatiotemporally organized spiking activity in the human cortex," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Yu, Dong & Wang, Guowei & Ding, Qianming & Li, Tianyu & Jia, Ya, 2022. "Effects of bounded noise and time delay on signal transmission in excitable neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
- Matteo Farinella & Daniel T Ruedt & Padraig Gleeson & Frederic Lanore & R Angus Silver, 2014. "Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-21, April.
- Zhiwei Chen & Wenjie Li & Zhen Fan & Shuai Dong & Yihong Chen & Minghui Qin & Min Zeng & Xubing Lu & Guofu Zhou & Xingsen Gao & Jun-Ming Liu, 2023. "All-ferroelectric implementation of reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Matteo Saponati & Martin Vinck, 2023. "Sequence anticipation and spike-timing-dependent plasticity emerge from a predictive learning rule," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Barbara Feulner & Matthew G. Perich & Raeed H. Chowdhury & Lee E. Miller & Juan A. Gallego & Claudia Clopath, 2022. "Small, correlated changes in synaptic connectivity may facilitate rapid motor learning," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Roxana Zeraati & Yan-Liang Shi & Nicholas A. Steinmetz & Marc A. Gieselmann & Alexander Thiele & Tirin Moore & Anna Levina & Tatiana A. Engel, 2023. "Intrinsic timescales in the visual cortex change with selective attention and reflect spatial connectivity," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
- Nicholas Alonso & Jeffrey L. Krichmar, 2024. "A sparse quantized hopfield network for online-continual memory," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Ruy Gómez-Ocádiz & Massimiliano Trippa & Chun-Lei Zhang & Lorenzo Posani & Simona Cocco & Rémi Monasson & Christoph Schmidt-Hieber, 2022. "A synaptic signal for novelty processing in the hippocampus," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Filippo Costa & Eline V. Schaft & Geertjan Huiskamp & Erik J. Aarnoutse & Maryse A. van’t Klooster & Niklaus Krayenbühl & Georgia Ramantani & Maeike Zijlmans & Giacomo Indiveri & Johannes Sarnthein, 2024. "Robust compression and detection of epileptiform patterns in ECoG using a real-time spiking neural network hardware framework," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Michele N. Insanally & Badr F. Albanna & Jade Toth & Brian DePasquale & Saba Shokat Fadaei & Trisha Gupta & Olivia Lombardi & Kishore Kuchibhotla & Kanaka Rajan & Robert C. Froemke, 2024. "Contributions of cortical neuron firing patterns, synaptic connectivity, and plasticity to task performance," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
- Marcello, Salustri & Shunra, Yoshida & Ruggero, Micheletto, 2023. "Neural and axonal heterogeneity improves information transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
- Yu, Dong & Wu, Yong & Yang, Lijian & Zhao, Yunjie & Jia, Ya, 2023. "Effect of topology on delay-induced multiple resonances in locally driven systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
- Rohit Abraham John & Yiğit Demirağ & Yevhen Shynkarenko & Yuliia Berezovska & Natacha Ohannessian & Melika Payvand & Peng Zeng & Maryna I. Bodnarchuk & Frank Krumeich & Gökhan Kara & Ivan Shorubalko &, 2022. "Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Balázs Ujfalussy & Tamás Kiss & Péter Érdi, 2009. "Parallel Computational Subunits in Dentate Granule Cells Generate Multiple Place Fields," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-16, September.
- Yujie Wu & Bizhao Shi & Zhong Zheng & Hanle Zheng & Fangwen Yu & Xue Liu & Guojie Luo & Lei Deng, 2024. "Adaptive spatiotemporal neural networks through complementary hybridization," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Zhenrui Liao & Kevin C. Gonzalez & Deborah M. Li & Catalina M. Yang & Donald Holder & Natalie E. McClain & Guofeng Zhang & Stephen W. Evans & Mariya Chavarha & Jane Simko & Christopher D. Makinson & M, 2024. "Functional architecture of intracellular oscillations in hippocampal dendrites," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44614-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.