IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v612y2022i7938d10.1038_s41586-022-05340-6.html
   My bibliography  Save this article

Dendrocentric learning for synthetic intelligence

Author

Listed:
  • Kwabena Boahen

    (Stanford University
    Stanford University
    Stanford University
    Stanford University)

Abstract

Artificial intelligence now advances by performing twice as many floating-point multiplications every two months, but the semiconductor industry tiles twice as many multipliers on a chip every two years. Moreover, the returns from tiling these multipliers ever more densely now diminish because signals must travel relatively farther and farther. Although travel can be shortened by stacking tiled multipliers in a three-dimensional chip, such a solution acutely reduces the available surface area for dissipating heat. Here I propose to transcend this three-dimensional thermal constraint by moving away from learning with synapses to learning with dendrites. Synaptic inputs are not weighted precisely but rather ordered meticulously along a short stretch of dendrite, termed dendrocentric learning. With the help of a computational model of a dendrite and a conceptual model of a ferroelectric device that emulates it, I illustrate how dendrocentric learning artificial intelligence—or synthetic intelligence for short—could run not with megawatts in the cloud but rather with watts on a smartphone.

Suggested Citation

  • Kwabena Boahen, 2022. "Dendrocentric learning for synthetic intelligence," Nature, Nature, vol. 612(7938), pages 43-50, December.
  • Handle: RePEc:nat:nature:v:612:y:2022:i:7938:d:10.1038_s41586-022-05340-6
    DOI: 10.1038/s41586-022-05340-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-05340-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-05340-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joshua M. Diamond & Julio I. Chapeton & Weizhen Xie & Samantha N. Jackson & Sara K. Inati & Kareem A. Zaghloul, 2024. "Focal seizures induce spatiotemporally organized spiking activity in the human cortex," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Anthony Zador & Sean Escola & Blake Richards & Bence Ölveczky & Yoshua Bengio & Kwabena Boahen & Matthew Botvinick & Dmitri Chklovskii & Anne Churchland & Claudia Clopath & James DiCarlo & Surya Gangu, 2023. "Catalyzing next-generation Artificial Intelligence through NeuroAI," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Hanle Zheng & Zhong Zheng & Rui Hu & Bo Xiao & Yujie Wu & Fangwen Yu & Xue Liu & Guoqi Li & Lei Deng, 2024. "Temporal dendritic heterogeneity incorporated with spiking neural networks for learning multi-timescale dynamics," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    4. Lukas M. Bongartz & Richard Kantelberg & Tommy Meier & Raik Hoffmann & Christian Matthus & Anton Weissbach & Matteo Cucchi & Hans Kleemann & Karl Leo, 2024. "Bistable organic electrochemical transistors: enthalpy vs. entropy," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Simone D’Agostino & Filippo Moro & Tristan Torchet & Yiğit Demirağ & Laurent Grenouillet & Niccolò Castellani & Giacomo Indiveri & Elisa Vianello & Melika Payvand, 2024. "DenRAM: neuromorphic dendritic architecture with RRAM for efficient temporal processing with delays," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Im, Seongil & Hwang, JinGyeong & Jeong, Jae-Seung & Lee, Hyejin & Park, Min Hyuk & Cho, Jeong Ho & Ju, Hyunsu & Lee, Suyoun, 2024. "Stochastic artificial neuron based on Ovonic Threshold Switch (OTS) and its applications for Restricted Boltzmann Machine (RBM)," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:612:y:2022:i:7938:d:10.1038_s41586-022-05340-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.