IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44105-1.html
   My bibliography  Save this article

African bushpigs exhibit porous species boundaries and appeared in Madagascar concurrently with human arrival

Author

Listed:
  • Renzo F. Balboa

    (University of Copenhagen)

  • Laura D. Bertola

    (University of Copenhagen)

  • Anna Brüniche-Olsen

    (University of Copenhagen)

  • Malthe Sebro Rasmussen

    (University of Copenhagen)

  • Xiaodong Liu

    (University of Copenhagen)

  • Guillaume Besnard

    (Université Toulouse Paul Sabatier)

  • Jordi Salmona

    (Université Toulouse Paul Sabatier)

  • Cindy G. Santander

    (University of Copenhagen)

  • Shixu He

    (University of Copenhagen)

  • Dietmar Zinner

    (German Primate Center, Leibniz Institute for Primate Research
    Georg-August-Universität Göttingen
    Leibniz Science Campus Primate Cognition)

  • Miguel Pedrono

    (Campus International de Baillarguet)

  • Vincent Muwanika

    (Makerere University)

  • Charles Masembe

    (Makerere University)

  • Mikkel Schubert

    (University of Copenhagen
    University of Copenhagen)

  • Josiah Kuja

    (University of Copenhagen)

  • Liam Quinn

    (University of Copenhagen)

  • Genís Garcia-Erill

    (University of Copenhagen)

  • Frederik Filip Stæger

    (University of Copenhagen)

  • Rianja Rakotoarivony

    (Campus International de Baillarguet)

  • Margarida Henrique

    (Instituto Gulbenkian de Ciência)

  • Long Lin

    (University of Copenhagen)

  • Xi Wang

    (University of Copenhagen)

  • Michael P. Heaton

    (US Meat Animal Research Center)

  • Timothy P. L. Smith

    (US Meat Animal Research Center)

  • Kristian Hanghøj

    (University of Copenhagen)

  • Mikkel-Holger S. Sinding

    (University of Copenhagen)

  • Anagaw Atickem

    (Addis Ababa University)

  • Lounès Chikhi

    (Université Toulouse Paul Sabatier
    Instituto Gulbenkian de Ciência)

  • Christian Roos

    (Leibniz Institute for Primate Research)

  • Philippe Gaubert

    (Université Toulouse Paul Sabatier
    Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões)

  • Hans R. Siegismund

    (University of Copenhagen)

  • Ida Moltke

    (University of Copenhagen)

  • Anders Albrechtsen

    (University of Copenhagen)

  • Rasmus Heller

    (University of Copenhagen)

Abstract

Several African mammals exhibit a phylogeographic pattern where closely related taxa are split between West/Central and East/Southern Africa, but their evolutionary relationships and histories remain controversial. Bushpigs (Potamochoerus larvatus) and red river hogs (P. porcus) are recognised as separate species due to morphological distinctions, a perceived lack of interbreeding at contact, and putatively old divergence times, but historically, they were considered conspecific. Moreover, the presence of Malagasy bushpigs as the sole large terrestrial mammal shared with the African mainland raises intriguing questions about its origin and arrival in Madagascar. Analyses of 67 whole genomes revealed a genetic continuum between the two species, with putative signatures of historical gene flow, variable FST values, and a recent divergence time (

Suggested Citation

  • Renzo F. Balboa & Laura D. Bertola & Anna Brüniche-Olsen & Malthe Sebro Rasmussen & Xiaodong Liu & Guillaume Besnard & Jordi Salmona & Cindy G. Santander & Shixu He & Dietmar Zinner & Miguel Pedrono &, 2024. "African bushpigs exhibit porous species boundaries and appeared in Madagascar concurrently with human arrival," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44105-1
    DOI: 10.1038/s41467-023-44105-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44105-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44105-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ludovic Orlando & Aurélien Ginolhac & Guojie Zhang & Duane Froese & Anders Albrechtsen & Mathias Stiller & Mikkel Schubert & Enrico Cappellini & Bent Petersen & Ida Moltke & Philip L. F. Johnson & Mat, 2013. "Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse," Nature, Nature, vol. 499(7456), pages 74-78, July.
    2. Alexei J Drummond & Simon Y W Ho & Matthew J Phillips & Andrew Rambaut, 2006. "Relaxed Phylogenetics and Dating with Confidence," PLOS Biology, Public Library of Science, vol. 4(5), pages 1-1, March.
    3. Morten Rasmussen & Sarah L. Anzick & Michael R. Waters & Pontus Skoglund & Michael DeGiorgio & Thomas W. Stafford & Simon Rasmussen & Ida Moltke & Anders Albrechtsen & Shane M. Doyle & G. David Poznik, 2014. "The genome of a Late Pleistocene human from a Clovis burial site in western Montana," Nature, Nature, vol. 506(7487), pages 225-229, February.
    4. Joseph K Pickrell & Jonathan K Pritchard, 2012. "Inference of Population Splits and Mixtures from Genome-Wide Allele Frequency Data," PLOS Genetics, Public Library of Science, vol. 8(11), pages 1-17, November.
    5. Heng Li & Richard Durbin, 2011. "Inference of human population history from individual whole-genome sequences," Nature, Nature, vol. 475(7357), pages 493-496, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaodong Liu & Long Lin & Mikkel-Holger S. Sinding & Laura D. Bertola & Kristian Hanghøj & Liam Quinn & Genís Garcia-Erill & Malthe Sebro Rasmussen & Mikkel Schubert & Patrícia Pečnerová & Renzo F. Ba, 2024. "Introgression and disruption of migration routes have shaped the genetic integrity of wildebeest populations," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youjie Zhao & Chengyong Su & Bo He & Ruie Nie & Yunliang Wang & Junye Ma & Jingyu Song & Qun Yang & Jiasheng Hao, 2023. "Dispersal from the Qinghai-Tibet plateau by a high-altitude butterfly is associated with rapid expansion and reorganization of its genome," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. He Yu & Alexandra Jamieson & Ardern Hulme-Beaman & Chris J. Conroy & Becky Knight & Camilla Speller & Hiba Al-Jarah & Heidi Eager & Alexandra Trinks & Gamini Adikari & Henriette Baron & Beate Böhlendo, 2022. "Palaeogenomic analysis of black rat (Rattus rattus) reveals multiple European introductions associated with human economic history," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Yvonne Willi & Kay Lucek & Olivier Bachmann & Nora Walden, 2022. "Recent speciation associated with range expansion and a shift to self-fertilization in North American Arabidopsis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Humberto García-Ortiz & Francisco Barajas-Olmos & Cecilia Contreras-Cubas & Miguel Ángel Cid-Soto & Emilio J. Córdova & Federico Centeno-Cruz & Elvia Mendoza-Caamal & Isabel Cicerón-Arellano & Marlen , 2021. "The genomic landscape of Mexican Indigenous populations brings insights into the peopling of the Americas," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    5. Ran Tian & Yaolei Zhang & Hui Kang & Fan Zhang & Zhihong Jin & Jiahao Wang & Peijun Zhang & Xuming Zhou & Janet M. Lanyon & Helen L. Sneath & Lucy Woolford & Guangyi Fan & Songhai Li & Inge Seim, 2024. "Sirenian genomes illuminate the evolution of fully aquatic species within the mammalian superorder afrotheria," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    6. Gideon S Bradburd & Peter L Ralph & Graham M Coop, 2016. "A Spatial Framework for Understanding Population Structure and Admixture," PLOS Genetics, Public Library of Science, vol. 12(1), pages 1-38, January.
    7. Marina Muzzio & Josefina M B Motti & Paula B Paz Sepulveda & Muh-ching Yee & Thomas Cooke & María R Santos & Virginia Ramallo & Emma L Alfaro & Jose E Dipierri & Graciela Bailliet & Claudio M Bravi & , 2018. "Population structure in Argentina," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-13, May.
    8. Baharian, Soheil & Gravel, Simon, 2018. "On the decidability of population size histories from finite allele frequency spectra," Theoretical Population Biology, Elsevier, vol. 120(C), pages 42-51.
    9. Juraj Bergman & Rasmus Ø. Pedersen & Erick J. Lundgren & Rhys T. Lemoine & Sophie Monsarrat & Elena A. Pearce & Mikkel H. Schierup & Jens-Christian Svenning, 2023. "Worldwide Late Pleistocene and Early Holocene population declines in extant megafauna are associated with Homo sapiens expansion rather than climate change," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Jun Gojobori & Nami Arakawa & Xiayire Xiaokaiti & Yuki Matsumoto & Shuichi Matsumura & Hitomi Hongo & Naotaka Ishiguro & Yohey Terai, 2024. "Japanese wolves are most closely related to dogs and share DNA with East Eurasian dogs," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Per Unneberg & Mårten Larsson & Anna Olsson & Ola Wallerman & Anna Petri & Ignas Bunikis & Olga Vinnere Pettersson & Chiara Papetti & Astthor Gislason & Henrik Glenner & Joan E. Cartes & Leocadio Blan, 2024. "Ecological genomics in the Northern krill uncovers loci for local adaptation across ocean basins," Nature Communications, Nature, vol. 15(1), pages 1-29, December.
    12. Joachim Schmidt & Lars Opgenoorth & Steffen Höll & Ralf Bastrop, 2012. "Into the Himalayan Exile: The Phylogeography of the Ground Beetle Ethira clade Supports the Tibetan Origin of Forest-Dwelling Himalayan Species Groups," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-15, September.
    13. Dinesh Aggarwal & Ben Warne & Aminu S. Jahun & William L. Hamilton & Thomas Fieldman & Louis Plessis & Verity Hill & Beth Blane & Emmeline Watkins & Elizabeth Wright & Grant Hall & Catherine Ludden & , 2022. "Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Alexandros G. Sotiropoulos & Epifanía Arango-Isaza & Tomohiro Ban & Chiara Barbieri & Salim Bourras & Christina Cowger & Paweł C. Czembor & Roi Ben-David & Amos Dinoor & Simon R. Ellwood & Johannes Gr, 2022. "Global genomic analyses of wheat powdery mildew reveal association of pathogen spread with historical human migration and trade," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Mateja Janeš & Minja Zorc & Maja Ferenčaković & Ino Curik & Peter Dovč & Vlatka Cubric-Curik, 2021. "Genomic Characterization of the Three Balkan Livestock Guardian Dogs," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    16. Ya-Mei Ding & Xiao-Xu Pang & Yu Cao & Wei-Ping Zhang & Susanne S. Renner & Da-Yong Zhang & Wei-Ning Bai, 2023. "Genome structure-based Juglandaceae phylogenies contradict alignment-based phylogenies and substitution rates vary with DNA repair genes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Romain Fournier & Zoi Tsangalidou & David Reich & Pier Francesco Palamara, 2023. "Haplotype-based inference of recent effective population size in modern and ancient DNA samples," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Pei-Kuan Cong & Wei-Yang Bai & Jin-Chen Li & Meng-Yuan Yang & Saber Khederzadeh & Si-Rui Gai & Nan Li & Yu-Heng Liu & Shi-Hui Yu & Wei-Wei Zhao & Jun-Quan Liu & Yi Sun & Xiao-Wei Zhu & Pian-Pian Zhao , 2022. "Genomic analyses of 10,376 individuals in the Westlake BioBank for Chinese (WBBC) pilot project," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    19. Steinrücken, Matthias & Paul, Joshua S. & Song, Yun S., 2013. "A sequentially Markov conditional sampling distribution for structured populations with migration and recombination," Theoretical Population Biology, Elsevier, vol. 87(C), pages 51-61.
    20. Iliana Bista & Jonathan M. D. Wood & Thomas Desvignes & Shane A. McCarthy & Michael Matschiner & Zemin Ning & Alan Tracey & James Torrance & Ying Sims & William Chow & Michelle Smith & Karen Oliver & , 2023. "Genomics of cold adaptations in the Antarctic notothenioid fish radiation," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44105-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.