IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28996-0.html
   My bibliography  Save this article

Oxidative metabolisms catalyzed Earth’s oxygenation

Author

Listed:
  • Haitao Shang

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Daniel H. Rothman

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Gregory P. Fournier

    (Massachusetts Institute of Technology)

Abstract

The burial of organic carbon, which prevents its remineralization via oxygen-consuming processes, is considered one of the causes of Earth’s oxygenation. Yet, higher levels of oxygen are thought to inhibit burial. Here we propose a resolution of this conundrum, wherein Earth’s initial oxygenation is favored by oxidative metabolisms generating partially oxidized organic matter (POOM), increasing burial via interaction with minerals in sediments. First, we introduce the POOM hypothesis via a mathematical argument. Second, we reconstruct the evolutionary history of one key enzyme family, flavin-dependent Baeyer–Villiger monooxygenases, that generates POOM, and show the temporal consistency of its diversification with the Proterozoic and Phanerozoic atmospheric oxygenation. Finally, we propose that the expansion of oxidative metabolisms instigated a positive feedback, which was amplified by the chemical changes to minerals on Earth’s surface. Collectively, these results suggest that Earth’s oxygenation is an autocatalytic transition induced by a combination of biological innovations and geological changes.

Suggested Citation

  • Haitao Shang & Daniel H. Rothman & Gregory P. Fournier, 2022. "Oxidative metabolisms catalyzed Earth’s oxygenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28996-0
    DOI: 10.1038/s41467-022-28996-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28996-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28996-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jordon D. Hemingway & Daniel H. Rothman & Katherine E. Grant & Sarah Z. Rosengard & Timothy I. Eglinton & Louis A. Derry & Valier V. Galy, 2019. "Mineral protection regulates long-term global preservation of natural organic carbon," Nature, Nature, vol. 570(7760), pages 228-231, June.
    2. Colin Goldblatt & Timothy M. Lenton & Andrew J. Watson, 2006. "Bistability of atmospheric oxygen and the Great Oxidation," Nature, Nature, vol. 443(7112), pages 683-686, October.
    3. Karine Lalonde & Alfonso Mucci & Alexandre Ouellet & Yves Gélinas, 2012. "Preservation of organic matter in sediments promoted by iron," Nature, Nature, vol. 483(7388), pages 198-200, March.
    4. Lee R. Kump & Mark E. Barley, 2007. "Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago," Nature, Nature, vol. 448(7157), pages 1033-1036, August.
    5. Alexei J Drummond & Simon Y W Ho & Matthew J Phillips & Andrew Rambaut, 2006. "Relaxed Phylogenetics and Dating with Confidence," PLOS Biology, Public Library of Science, vol. 4(5), pages 1-1, March.
    6. Timothy M. Lenton, 1998. "Gaia and natural selection," Nature, Nature, vol. 394(6692), pages 439-447, July.
    7. Fabrice Gaillard & Bruno Scaillet & Nicholas T. Arndt, 2011. "Atmospheric oxygenation caused by a change in volcanic degassing pressure," Nature, Nature, vol. 478(7368), pages 229-232, October.
    8. Oliver J. Lechtenfeld & Norbert Hertkorn & Yuan Shen & Matthias Witt & Ronald Benner, 2015. "Marine sequestration of carbon in bacterial metabolites," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke-Qing Xiao & Oliver W. Moore & Peyman Babakhani & Lisa Curti & Caroline L. Peacock, 2022. "Mineralogical control on methylotrophic methanogenesis and implications for cryptic methane cycling in marine surface sediment," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Guoai Li & Xuxu Chai & Zheng Shi & Honghua Ruan, 2023. "Interactive Effects Determine Radiocarbon Abundance in Soil Fractions of Global Biomes," Land, MDPI, vol. 12(5), pages 1-17, May.
    3. Daniel R. Hummer & Joshua J. Golden & Grethe Hystad & Robert T. Downs & Ahmed Eleish & Chao Liu & Jolyon Ralph & Shaunna M. Morrison & Michael B. Meyer & Robert M. Hazen, 2022. "Evidence for the oxidation of Earth’s crust from the evolution of manganese minerals," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Mojtaba Fakhraee & Noah Planavsky, 2024. "Insights from a dynamical system approach into the history of atmospheric oxygenation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Joachim Schmidt & Lars Opgenoorth & Steffen Höll & Ralf Bastrop, 2012. "Into the Himalayan Exile: The Phylogeography of the Ground Beetle Ethira clade Supports the Tibetan Origin of Forest-Dwelling Himalayan Species Groups," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-15, September.
    6. Yunru Chen & Liang Dong & Weikang Sui & Mingyang Niu & Xingqian Cui & Kai-Uwe Hinrichs & Fengping Wang, 2024. "Cycling and persistence of iron-bound organic carbon in subseafloor sediments," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Iliana Bista & Jonathan M. D. Wood & Thomas Desvignes & Shane A. McCarthy & Michael Matschiner & Zemin Ning & Alan Tracey & James Torrance & Ying Sims & William Chow & Michelle Smith & Karen Oliver & , 2023. "Genomics of cold adaptations in the Antarctic notothenioid fish radiation," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Folk, György, 2019. "Weal: the universal core of human well-being," MPRA Paper 97082, University Library of Munich, Germany.
    9. Laura A. Richards & Arun Kumar & Prabhat Shankar & Aman Gaurav & Ashok Ghosh & David A. Polya, 2020. "Distribution and Geochemical Controls of Arsenic and Uranium in Groundwater-Derived Drinking Water in Bihar, India," IJERPH, MDPI, vol. 17(7), pages 1-26, April.
    10. Yankuo Sun & Jiabao Xing & Samuel L. Hong & Nena Bollen & Sijia Xu & Yue Li & Jianhao Zhong & Xiaopeng Gao & Dihua Zhu & Jing Liu & Lang Gong & Lei Zhou & Tongqing An & Mang Shi & Heng Wang & Guy Bael, 2024. "Untangling lineage introductions, persistence and transmission drivers of HP-PRRSV sublineage 8.7," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. James G Dyke & Iain S Weaver, 2013. "The Emergence of Environmental Homeostasis in Complex Ecosystems," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-9, May.
    12. Mekala Sundaram & Janna R Willoughby & Nathanael I Lichti & Michael A Steele & Robert K Swihart, 2015. "Segregating the Effects of Seed Traits and Common Ancestry of Hardwood Trees on Eastern Gray Squirrel Foraging Decisions," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-16, June.
    13. Jonathon D. Gass & Nichola J. Hill & Lambodhar Damodaran & Elena N. Naumova & Felicia B. Nutter & Jonathan A. Runstadler, 2023. "Ecogeographic Drivers of the Spatial Spread of Highly Pathogenic Avian Influenza Outbreaks in Europe and the United States, 2016–Early 2022," IJERPH, MDPI, vol. 20(11), pages 1-17, June.
    14. Guoxiong Chen & Qiuming Cheng & Timothy W. Lyons & Jun Shen & Frits Agterberg & Ning Huang & Molei Zhao, 2022. "Reconstructing Earth’s atmospheric oxygenation history using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Liu, Yuanbin & Hong, Weixiang & Cao, Bingyang, 2019. "Machine learning for predicting thermodynamic properties of pure fluids and their mixtures," Energy, Elsevier, vol. 188(C).
    16. Nico Neureiter & Peter Ranacher & Nour Efrat-Kowalsky & Gereon A. Kaiping & Robert Weibel & Paul Widmer & Remco R. Bouckaert, 2022. "Detecting contact in language trees: a Bayesian phylogenetic model with horizontal transfer," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-14, December.
    17. Michael D Nowak & Andrew B Smith & Carl Simpson & Derrick J Zwickl, 2013. "A Simple Method for Estimating Informative Node Age Priors for the Fossil Calibration of Molecular Divergence Time Analyses," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-13, June.
    18. Jared L. Wilmoth, 2021. "Redox Heterogeneity Entangles Soil and Climate Interactions," Sustainability, MDPI, vol. 13(18), pages 1-14, September.
    19. Gual, Miguel A. & Norgaard, Richard B., 2010. "Bridging ecological and social systems coevolution: A review and proposal," Ecological Economics, Elsevier, vol. 69(4), pages 707-717, February.
    20. Bethany L Dearlove & Simon D W Frost, 2015. "Measuring Asymmetry in Time-Stamped Phylogenies," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-16, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28996-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.