IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42510-0.html
   My bibliography  Save this article

High anisotropy in electrical and thermal conductivity through the design of aerogel-like superlattice (NaOH)0.5NbSe2

Author

Listed:
  • Ruijin Sun

    (China University of Geosciences, Beijing (CUGB))

  • Jun Deng

    (Chinese Academy of Science)

  • Xiaowei Wu

    (Chinese Academy of Science)

  • Munan Hao

    (Chinese Academy of Science)

  • Ke Ma

    (Chinese Academy of Science
    University of Chinese Academy of Sciences)

  • Yuxin Ma

    (Chinese Academy of Science)

  • Changchun Zhao

    (China University of Geosciences, Beijing (CUGB))

  • Dezhong Meng

    (China University of Geosciences, Beijing (CUGB))

  • Xiaoyu Ji

    (Chinese Academy of Science
    Liaoning University)

  • Yiyang Ding

    (Imperial College London)

  • Yu Pang

    (Huazhong University of Science and Technology)

  • Xin Qian

    (Huazhong University of Science and Technology)

  • Ronggui Yang

    (Huazhong University of Science and Technology)

  • Guodong Li

    (Chinese Academy of Science)

  • Zhilin Li

    (Chinese Academy of Science)

  • Linjie Dai

    (Cavendish Laboratory, 19 JJ Thomson Avenue)

  • Tianping Ying

    (Chinese Academy of Science)

  • Huaizhou zhao

    (Chinese Academy of Science)

  • Shixuan Du

    (Chinese Academy of Science)

  • Gang Li

    (Chinese Academy of Science)

  • Shifeng Jin

    (Chinese Academy of Science
    University of Chinese Academy of Sciences)

  • Xiaolong Chen

    (Chinese Academy of Science
    University of Chinese Academy of Sciences
    Songshan Lake Materials Laboratory)

Abstract

Interlayer decoupling plays an essential role in realizing unprecedented properties in atomically thin materials, but it remains relatively unexplored in the bulk. It is unclear how to realize a large crystal that behaves as its monolayer counterpart by artificial manipulation. Here, we construct a superlattice consisting of alternating layers of NbSe2 and highly porous hydroxide, as a proof of principle for realizing interlayer decoupling in bulk materials. In (NaOH)0.5NbSe2, the electric decoupling is manifested by an ideal 1D insulating state along the interlayer direction. Vibration decoupling is demonstrated through the absence of interlayer models in the Raman spectrum, dominant local modes in heat capacity, low interlayer coupling energy and out-of-plane thermal conductivity (0.28 W/mK at RT) that are reduced to a few percent of NbSe2’s. Consequently, a drastic enhancement of CDW transition temperature (>110 K) and Pauling-breaking 2D superconductivity is observed, suggesting that the bulk crystal behaves similarly to an exfoliated NbSe2 monolayer. Our findings provide a route to achieve intrinsic 2D properties on a large-scale without exfoliation.

Suggested Citation

  • Ruijin Sun & Jun Deng & Xiaowei Wu & Munan Hao & Ke Ma & Yuxin Ma & Changchun Zhao & Dezhong Meng & Xiaoyu Ji & Yiyang Ding & Yu Pang & Xin Qian & Ronggui Yang & Guodong Li & Zhilin Li & Linjie Dai & , 2023. "High anisotropy in electrical and thermal conductivity through the design of aerogel-like superlattice (NaOH)0.5NbSe2," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42510-0
    DOI: 10.1038/s41467-023-42510-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42510-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42510-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuan Cao & Valla Fatemi & Shiang Fang & Kenji Watanabe & Takashi Taniguchi & Efthimios Kaxiras & Pablo Jarillo-Herrero, 2018. "Unconventional superconductivity in magic-angle graphene superlattices," Nature, Nature, vol. 556(7699), pages 43-50, April.
    2. Paribesh Acharyya & Tanmoy Ghosh & Koushik Pal & Kewal Singh Rana & Moinak Dutta & Diptikanta Swain & Martin Etter & Ajay Soni & Umesh V. Waghmare & Kanishka Biswas, 2022. "Glassy thermal conductivity in Cs3Bi2I6Cl3 single crystal," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Jingsi Qiao & Xianghua Kong & Zhi-Xin Hu & Feng Yang & Wei Ji, 2014. "High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    4. Sefaattin Tongay & Hasan Sahin & Changhyun Ko & Alex Luce & Wen Fan & Kai Liu & Jian Zhou & Ying-Sheng Huang & Ching-Hwa Ho & Jinyuan Yan & D. Frank Ogletree & Shaul Aloni & Jie Ji & Shushen Li & Jing, 2014. "Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling," Nature Communications, Nature, vol. 5(1), pages 1-6, May.
    5. Xiang Chen & Yong Ju Park & Minpyo Kang & Seung-Kyun Kang & Jahyun Koo & Sachin M. Shinde & Jiho Shin & Seunghyun Jeon & Gayoung Park & Ying Yan & Matthew R. MacEwan & Wilson Z. Ray & Kyung-Mi Lee & J, 2018. "CVD-grown monolayer MoS2 in bioabsorbable electronics and biosensors," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    6. Yuan Huang & Yu-Hao Pan & Rong Yang & Li-Hong Bao & Lei Meng & Hai-Lan Luo & Yong-Qing Cai & Guo-Dong Liu & Wen-Juan Zhao & Zhang Zhou & Liang-Mei Wu & Zhi-Li Zhu & Ming Huang & Li-Wei Liu & Lei Liu &, 2020. "Universal mechanical exfoliation of large-area 2D crystals," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shouheng Chen & Zihan Liang & Jinshui Miao & Xiang-Long Yu & Shuo Wang & Yule Zhang & Han Wang & Yun Wang & Chun Cheng & Gen Long & Taihong Wang & Lin Wang & Han Zhang & Xiaolong Chen, 2024. "Infrared optoelectronics in twisted black phosphorus," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. He Wang & Yanzhao Liu & Ming Gong & Hua Jiang & Xiaoyue Gao & Wenlong Ma & Jiawei Luo & Haoran Ji & Jun Ge & Shuang Jia & Peng Gao & Ziqiang Wang & X. C. Xie & Jian Wang, 2023. "Emergent superconductivity in topological-kagome-magnet/metal heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. J. Díez-Mérida & A. Díez-Carlón & S. Y. Yang & Y.-M. Xie & X.-J. Gao & J. Senior & K. Watanabe & T. Taniguchi & X. Lu & A. P. Higginbotham & K. T. Law & Dmitri K. Efetov, 2023. "Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Yuhao Ye & Jinhua Wang & Pan Nie & Huakun Zuo & Xiaokang Li & Kamran Behnia & Zengwei Zhu & Benoît Fauqué, 2024. "Tuning the BCS-BEC crossover of electron-hole pairing with pressure," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    5. Li Chen & Cong Lin & Diwei Shi & Xuanyu Huang & Quanshui Zheng & Jinhui Nie & Ming Ma, 2023. "Fully automatic transfer and measurement system for structural superlubric materials," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Álvaro Jiménez-Galán & Chandler Bossaer & Guilmot Ernotte & Andrew M. Parks & Rui E. F. Silva & David M. Villeneuve & André Staudte & Thomas Brabec & Adina Luican-Mayer & Giulio Vampa, 2023. "Orbital perspective on high-harmonic generation from solids," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    7. Xinyu Wang & Jinghua Jiang & Juan Chen & Zhawure Asilehan & Wentao Tang & Chenhui Peng & Rui Zhang, 2024. "Moiré effect enables versatile design of topological defects in nematic liquid crystals," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Alejandro Ruiz & Brandon Gunn & Yi Lu & Kalyan Sasmal & Camilla M. Moir & Rourav Basak & Hai Huang & Jun-Sik Lee & Fanny Rodolakis & Timothy J. Boyle & Morgan Walker & Yu He & Santiago Blanco-Canosa &, 2022. "Stabilization of three-dimensional charge order through interplanar orbital hybridization in PrxY1−xBa2Cu3O6+δ," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    9. Sami Dzsaber & Diego A. Zocco & Alix McCollam & Franziska Weickert & Ross McDonald & Mathieu Taupin & Gaku Eguchi & Xinlin Yan & Andrey Prokofiev & Lucas M. K. Tang & Bryan Vlaar & Laurel E. Winter & , 2022. "Control of electronic topology in a strongly correlated electron system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    10. Sahar Pakdel & Asbjørn Rasmussen & Alireza Taghizadeh & Mads Kruse & Thomas Olsen & Kristian S. Thygesen, 2024. "High-throughput computational stacking reveals emergent properties in natural van der Waals bilayers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Kaijie Yang & Zian Xu & Yanjie Feng & Frank Schindler & Yuanfeng Xu & Zhen Bi & B. Andrei Bernevig & Peizhe Tang & Chao-Xing Liu, 2024. "Topological minibands and interaction driven quantum anomalous Hall state in topological insulator based moiré heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Keshav Singh & Aaron Chew & Jonah Herzog-Arbeitman & B. Andrei Bernevig & Oskar Vafek, 2024. "Topological heavy fermions in magnetic field," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Peng Wang & Qidong Fu & Ruihan Peng & Yaroslav V. Kartashov & Lluis Torner & Vladimir V. Konotop & Fangwei Ye, 2022. "Two-dimensional Thouless pumping of light in photonic moiré lattices," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Avior Almoalem & Irena Feldman & Ilay Mangel & Michael Shlafman & Yuval E. Yaish & Mark H. Fischer & Michael Moshe & Jonathan Ruhman & Amit Kanigel, 2024. "The observation of π-shifts in the Little-Parks effect in 4Hb-TaS2," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Märta A. Tschudin & David A. Broadway & Patrick Siegwolf & Carolin Schrader & Evan J. Telford & Boris Gross & Jordan Cox & Adrien E. E. Dubois & Daniel G. Chica & Ricardo Rama-Eiroa & Elton J. G. Sant, 2024. "Imaging nanomagnetism and magnetic phase transitions in atomically thin CrSBr," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Yuri Saida & Thomas Gauthier & Hiroo Suzuki & Satoshi Ohmura & Ryo Shikata & Yui Iwasaki & Godai Noyama & Misaki Kishibuchi & Yuichiro Tanaka & Wataru Yajima & Nicolas Godin & Gaël Privault & Tomoharu, 2024. "Photoinduced dynamics during electronic transfer from narrow to wide bandgap layers in one-dimensional heterostructured materials," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Anushree Datta & M. J. Calderón & A. Camjayi & E. Bascones, 2023. "Heavy quasiparticles and cascades without symmetry breaking in twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Xiaozhou Zan & Xiangdong Guo & Aolin Deng & Zhiheng Huang & Le Liu & Fanfan Wu & Yalong Yuan & Jiaojiao Zhao & Yalin Peng & Lu Li & Yangkun Zhang & Xiuzhen Li & Jundong Zhu & Jingwei Dong & Dongxia Sh, 2024. "Electron/infrared-phonon coupling in ABC trilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    19. Haoyu Qin & Shaohu Chen & Weixuan Zhang & Huizhen Zhang & Ruhao Pan & Junjie Li & Lei Shi & Jian Zi & Xiangdong Zhang, 2024. "Optical moiré bound states in the continuum," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    20. Suk Hyun Sung & Yin Min Goh & Hyobin Yoo & Rebecca Engelke & Hongchao Xie & Kuan Zhang & Zidong Li & Andrew Ye & Parag B. Deotare & Ellad B. Tadmor & Andrew J. Mannix & Jiwoong Park & Liuyan Zhao & Ph, 2022. "Torsional periodic lattice distortions and diffraction of twisted 2D materials," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42510-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.