IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43447-0.html
   My bibliography  Save this article

Bacterial-induced or passively administered interferon gamma conditions the lung for early control of SARS-CoV-2

Author

Listed:
  • Kerry L. Hilligan

    (Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health
    Malaghan Institute of Medical Research)

  • Sivaranjani Namasivayam

    (Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health)

  • Chad S. Clancy

    (Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health)

  • Paul J. Baker

    (Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health)

  • Samuel I. Old

    (Malaghan Institute of Medical Research)

  • Victoria Peluf

    (Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health
    Immunoparasitology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health)

  • Eduardo P. Amaral

    (Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health)

  • Sandra D. Oland

    (Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health)

  • Danielle O’Mard

    (Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health)

  • Julie Laux

    (Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health)

  • Melanie Cohen

    (Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health)

  • Nicole L. Garza

    (SARS-CoV2- Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health)

  • Bernard A. P. Lafont

    (SARS-CoV2- Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health)

  • Reed F. Johnson

    (SARS-CoV2- Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health)

  • Carl G. Feng

    (The University of Sydney
    The University of Sydney)

  • Dragana Jankovic

    (Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health
    Immunoparasitology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health)

  • Olivier Lamiable

    (Malaghan Institute of Medical Research)

  • Katrin D. Mayer-Barber

    (Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health)

  • Alan Sher

    (Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health)

Abstract

Type-1 and type-3 interferons (IFNs) are important for control of viral replication; however, less is known about the role of Type-2 IFN (IFNγ) in anti-viral immunity. We previously observed that lung infection with Mycobacterium bovis BCG achieved though intravenous (iv) administration provides strong protection against SARS-CoV-2 in mice yet drives low levels of type-1 IFNs but robust IFNγ. Here we examine the role of ongoing IFNγ responses to pre-established bacterial infection on SARS-CoV-2 disease outcomes in two murine models. We report that IFNγ is required for iv BCG induced reduction in pulmonary viral loads, an outcome dependent on IFNγ receptor expression by non-hematopoietic cells. Importantly, we show that BCG infection prompts pulmonary epithelial cells to upregulate IFN-stimulated genes with reported anti-viral activity in an IFNγ-dependent manner, suggesting a possible mechanism for the observed protection. Finally, we confirm the anti-viral properties of IFNγ by demonstrating that the recombinant cytokine itself provides strong protection against SARS-CoV-2 challenge when administered intranasally. Together, our data show that a pre-established IFNγ response within the lung is protective against SARS-CoV-2 infection, suggesting that concurrent or recent infections that drive IFNγ may limit the pathogenesis of SARS-CoV-2 and supporting possible prophylactic uses of IFNγ in COVID-19 management.

Suggested Citation

  • Kerry L. Hilligan & Sivaranjani Namasivayam & Chad S. Clancy & Paul J. Baker & Samuel I. Old & Victoria Peluf & Eduardo P. Amaral & Sandra D. Oland & Danielle O’Mard & Julie Laux & Melanie Cohen & Nic, 2023. "Bacterial-induced or passively administered interferon gamma conditions the lung for early control of SARS-CoV-2," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43447-0
    DOI: 10.1038/s41467-023-43447-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43447-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43447-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pierre Bessière & Marine Wasniewski & Evelyne Picard-Meyer & Alexandre Servat & Thomas Figueroa & Charlotte Foret-Lucas & Amelia Coggon & Sandrine Lesellier & Frank Boué & Nathan Cebron & Blandine Gau, 2021. "Intranasal type I interferon treatment is beneficial only when administered before clinical signs onset in the SARS-CoV-2 hamster model," PLOS Pathogens, Public Library of Science, vol. 17(8), pages 1-17, August.
    2. Dijin Xu & Weiqian Jiang & Lizhen Wu & Ryan G. Gaudet & Eui-Soon Park & Maohan Su & Sudheer Kumar Cheppali & Nagarjuna R. Cheemarla & Pradeep Kumar & Pradeep D. Uchil & Jonathan R. Grover & Ellen F. F, 2023. "PLSCR1 is a cell-autonomous defence factor against SARS-CoV-2 infection," Nature, Nature, vol. 619(7971), pages 819-827, July.
    3. Stuart J. D. Neil & Trinity Zang & Paul D. Bieniasz, 2008. "Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu," Nature, Nature, vol. 451(7177), pages 425-430, January.
    4. Peng Zhou & Xing-Lou Yang & Xian-Guang Wang & Ben Hu & Lei Zhang & Wei Zhang & Hao-Rui Si & Yan Zhu & Bei Li & Chao-Lin Huang & Hui-Dong Chen & Jing Chen & Yun Luo & Hua Guo & Ren-Di Jiang & Mei-Qin L, 2020. "Addendum: A pneumonia outbreak associated with a new coronavirus of probable bat origin," Nature, Nature, vol. 588(7836), pages 6-6, December.
    5. Peng Zhou & Xing-Lou Yang & Xian-Guang Wang & Ben Hu & Lei Zhang & Wei Zhang & Hao-Rui Si & Yan Zhu & Bei Li & Chao-Lin Huang & Hui-Dong Chen & Jing Chen & Yun Luo & Hua Guo & Ren-Di Jiang & Mei-Qin L, 2020. "A pneumonia outbreak associated with a new coronavirus of probable bat origin," Nature, Nature, vol. 579(7798), pages 270-273, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahadat Uddin & Arif Khan & Haohui Lu & Fangyu Zhou & Shakir Karim, 2022. "Suburban Road Networks to Explore COVID-19 Vulnerability and Severity," IJERPH, MDPI, vol. 19(4), pages 1-9, February.
    2. Kirsten R.C. Hensgens & Inge H.T. van Rensen & Anita W. Lekx & Frits H.M. van Osch & Lieve H.H. Knarren & Caroline E. Wyers & Joop P. van den Bergh & Dennis G. Barten, 2021. "Sort and Sieve: Pre-Triage Screening of Patients with Suspected COVID-19 in the Emergency Department," IJERPH, MDPI, vol. 18(17), pages 1-11, September.
    3. Quan-Hoang Vuong & Tam-Tri Le & Viet-Phuong La & Huyen Thanh Thanh Nguyen & Manh-Toan Ho & Quy Khuc & Minh-Hoang Nguyen, 2022. "Covid-19 vaccines production and societal immunization under the serendipity-mindsponge-3D knowledge management theory and conceptual framework," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-12, December.
    4. Hengrui Liu & Sho Iketani & Arie Zask & Nisha Khanizeman & Eva Bednarova & Farhad Forouhar & Brandon Fowler & Seo Jung Hong & Hiroshi Mohri & Manoj S. Nair & Yaoxing Huang & Nicholas E. S. Tay & Sumin, 2022. "Development of optimized drug-like small molecule inhibitors of the SARS-CoV-2 3CL protease for treatment of COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Graziella Orrù & Ciro Conversano & Eleonora Malloggi & Francesca Francesconi & Rebecca Ciacchini & Angelo Gemignani, 2020. "Neurological Complications of COVID-19 and Possible Neuroinvasion Pathways: A Systematic Review," IJERPH, MDPI, vol. 17(18), pages 1-18, September.
    6. Gleidson Sobreira Leite & Adriano Bessa Albuquerque & Plácido Rogerio Pinheiro, 2021. "Applications of Technological Solutions in Primary Ways of Preventing Transmission of Respiratory Infectious Diseases—A Systematic Literature Review," IJERPH, MDPI, vol. 18(20), pages 1-50, October.
    7. Britton Boras & Rhys M. Jones & Brandon J. Anson & Dan Arenson & Lisa Aschenbrenner & Malina A. Bakowski & Nathan Beutler & Joseph Binder & Emily Chen & Heather Eng & Holly Hammond & Jennifer Hammond , 2021. "Preclinical characterization of an intravenous coronavirus 3CL protease inhibitor for the potential treatment of COVID19," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    8. Yongzhu Xiong & Yunpeng Wang & Feng Chen & Mingyong Zhu, 2020. "Spatial Statistics and Influencing Factors of the COVID-19 Epidemic at Both Prefecture and County Levels in Hubei Province, China," IJERPH, MDPI, vol. 17(11), pages 1-26, May.
    9. Eugene Song & Jae-Eun Lee & Seola Kwon, 2021. "Effect of Public Empathy with Infection-Control Guidelines on Infection-Prevention Attitudes and Behaviors: Based on the Case of COVID-19," IJERPH, MDPI, vol. 18(24), pages 1-18, December.
    10. Fabiana Fiasca & Mauro Minelli & Dominga Maio & Martina Minelli & Ilaria Vergallo & Stefano Necozione & Antonella Mattei, 2020. "Associations between COVID-19 Incidence Rates and the Exposure to PM2.5 and NO 2 : A Nationwide Observational Study in Italy," IJERPH, MDPI, vol. 17(24), pages 1-10, December.
    11. Małgorzata Dudzińska & Marta Gwiaździńska-Goraj & Aleksandra Jezierska-Thöle, 2022. "Social Factors as Major Determinants of Rural Development Variation for Predicting Epidemic Vulnerability: A Lesson for the Future," IJERPH, MDPI, vol. 19(21), pages 1-24, October.
    12. James, Nick & Menzies, Max, 2023. "Collective infectivity of the pandemic over time and association with vaccine coverage and economic development," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    13. Jaeyong Lee & Calem Kenward & Liam J. Worrall & Marija Vuckovic & Francesco Gentile & Anh-Tien Ton & Myles Ng & Artem Cherkasov & Natalie C. J. Strynadka & Mark Paetzel, 2022. "X-ray crystallographic characterization of the SARS-CoV-2 main protease polyprotein cleavage sites essential for viral processing and maturation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Xu, Baochang & Li, Sihui & Afzal, Ayesha & Mirza, Nawazish & Zhang, Meng, 2022. "The impact of financial development on environmental sustainability: A European perspective," Resources Policy, Elsevier, vol. 78(C).
    15. Leili Mohammadi & Ahmad Mehravaran & Zahra Derakhshan & Ehsan Gharehchahi & Elza Bontempi & Mohammad Golaki & Razieh Khaksefidi & Mohadeseh Motamed-Jahromi & Mahsa Keshtkar & Amin Mohammadpour & Hamid, 2022. "Investigating the Role of Environmental Factors on the Survival, Stability, and Transmission of SARS-CoV-2, and Their Contribution to COVID-19 Outbreak: A Review," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
    16. Jing Wang & Yuan-fei Pan & Li-fen Yang & Wei-hong Yang & Kexin Lv & Chu-ming Luo & Juan Wang & Guo-peng Kuang & Wei-chen Wu & Qin-yu Gou & Gen-yang Xin & Bo Li & Huan-le Luo & Shoudeng Chen & Yue-long, 2023. "Individual bat virome analysis reveals co-infection and spillover among bats and virus zoonotic potential," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Nur Hannani Bi Rahman & Shazmin Shareena A. Azis & Ibrahim Sipan, 2021. "COVID-19: Standard Operating Procedure Improvement For Green Office Building Using Indoor Environmental Quality," LARES lares-2021-4dqg, Latin American Real Estate Society (LARES).
    18. Ho‐fung Hung, 2022. "The Virus, the Dollar, and the Global Order: The COVID‐19 Crisis in Comparative Perspective," Development and Change, International Institute of Social Studies, vol. 53(6), pages 1177-1199, November.
    19. Eduardo Gutiérrez-Abejón & Eduardo Tamayo & Débora Martín-García & F. Javier Álvarez & Francisco Herrera-Gómez, 2020. "Clinical Profile, Treatment and Predictors during the First COVID-19 Wave: A Population-Based Registry Analysis from Castile and Leon Hospitals," IJERPH, MDPI, vol. 17(24), pages 1-15, December.
    20. Bo Qin & Ziheng Li & Kaiming Tang & Tongyun Wang & Yubin Xie & Sylvain Aumonier & Meitian Wang & Shuofeng Yuan & Sheng Cui, 2023. "Identification of the SARS-unique domain of SARS-CoV-2 as an antiviral target," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43447-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.