IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v451y2008i7177d10.1038_nature06553.html
   My bibliography  Save this article

Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu

Author

Listed:
  • Stuart J. D. Neil

    (Aaron Diamond AIDS Research Center and Laboratory of Retrovirology, The Rockefeller University, 455 First Avenue, New York, New York 10016, USA)

  • Trinity Zang

    (Aaron Diamond AIDS Research Center and Laboratory of Retrovirology, The Rockefeller University, 455 First Avenue, New York, New York 10016, USA)

  • Paul D. Bieniasz

    (Aaron Diamond AIDS Research Center and Laboratory of Retrovirology, The Rockefeller University, 455 First Avenue, New York, New York 10016, USA)

Abstract

Human cells possess an antiviral activity that inhibits the release of retrovirus particles, and other enveloped virus particles, and is antagonized by the HIV-1 accessory protein, Vpu. This antiviral activity can be constitutively expressed or induced by interferon-α, and it consists of protein-based tethers, which we term ‘tetherins’, that cause retention of fully formed virions on infected cell surfaces. Using deductive constraints and gene expression analyses, we identify CD317 (also called BST2 or HM1.24), a membrane protein of previously unknown function, as a tetherin. Specifically, CD317 expression correlated with, and induced, a requirement for Vpu during HIV-1 and murine leukaemia virus particle release. Furthermore, in cells where HIV-1 virion release requires Vpu expression, depletion of CD317 abolished this requirement. CD317 caused retention of virions on cell surfaces and, after endocytosis, in CD317-positive compartments. Vpu co-localized with CD317 and inhibited these effects. Inhibition of Vpu function and consequent mobilization of tetherin’s antiviral activity is a potential therapeutic strategy in HIV/AIDS.

Suggested Citation

  • Stuart J. D. Neil & Trinity Zang & Paul D. Bieniasz, 2008. "Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu," Nature, Nature, vol. 451(7177), pages 425-430, January.
  • Handle: RePEc:nat:nature:v:451:y:2008:i:7177:d:10.1038_nature06553
    DOI: 10.1038/nature06553
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature06553
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature06553?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sylvie Rato & Antonio Rausell & Miguel Muñoz & Amalio Telenti & Angela Ciuffi, 2017. "Single-cell analysis identifies cellular markers of the HIV permissive cell," PLOS Pathogens, Public Library of Science, vol. 13(10), pages 1-23, October.
    2. Kerry L. Hilligan & Sivaranjani Namasivayam & Chad S. Clancy & Paul J. Baker & Samuel I. Old & Victoria Peluf & Eduardo P. Amaral & Sandra D. Oland & Danielle O’Mard & Julie Laux & Melanie Cohen & Nic, 2023. "Bacterial-induced or passively administered interferon gamma conditions the lung for early control of SARS-CoV-2," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Nathaniel D Bachtel & Gisele Umviligihozo & Suzanne Pickering & Talia M Mota & Hua Liang & Gregory Q Del Prete & Pramita Chatterjee & Guinevere Q Lee & Rasmi Thomas & Mark A Brockman & Stuart Neil & M, 2018. "HLA-C downregulation by HIV-1 adapts to host HLA genotype," PLOS Pathogens, Public Library of Science, vol. 14(9), pages 1-25, September.
    4. Caterina Prelli Bozzo & Alexandre Laliberté & Aurora De Luna & Chiara Pastorio & Kerstin Regensburger & Stefan Krebs & Alexander Graf & Helmut Blum & Meta Volcic & Konstantin M. J. Sparrer & Frank Kir, 2024. "Replication competent HIV-guided CRISPR screen identifies antiviral factors including targets of the accessory protein Nef," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Weijing Yang & Hong Wang & Zhaolong Li & Lihua Zhang & Jianhui Liu & Frank Kirchhoff & Chen Huan & Wenyan Zhang, 2024. "RPLP1 restricts HIV-1 transcription by disrupting C/EBPβ binding to the LTR," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:451:y:2008:i:7177:d:10.1038_nature06553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.