IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32854-4.html
   My bibliography  Save this article

X-ray crystallographic characterization of the SARS-CoV-2 main protease polyprotein cleavage sites essential for viral processing and maturation

Author

Listed:
  • Jaeyong Lee

    (The University of British Columbia
    Simon Fraser University)

  • Calem Kenward

    (The University of British Columbia)

  • Liam J. Worrall

    (The University of British Columbia)

  • Marija Vuckovic

    (The University of British Columbia)

  • Francesco Gentile

    (The University of British Columbia)

  • Anh-Tien Ton

    (The University of British Columbia)

  • Myles Ng

    (The University of British Columbia)

  • Artem Cherkasov

    (The University of British Columbia)

  • Natalie C. J. Strynadka

    (The University of British Columbia)

  • Mark Paetzel

    (Simon Fraser University)

Abstract

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the pathogen that causes COVID-19, produces polyproteins 1a and 1ab that contain, respectively, 11 or 16 non-structural proteins (nsp). Nsp5 is the main protease (Mpro) responsible for cleavage at eleven positions along these polyproteins, including at its own N- and C-terminal boundaries, representing essential processing events for viral assembly and maturation. Using C-terminally substituted Mpro chimeras, we have determined X-ray crystallographic structures of Mpro in complex with 10 of its 11 viral cleavage sites, bound at full occupancy intermolecularly in trans, within the active site of either the native enzyme and/or a catalytic mutant (C145A). Capture of both acyl-enzyme intermediate and product-like complex forms of a P2(Leu) substrate in the native active site provides direct comparative characterization of these mechanistic steps as well as further informs the basis for enhanced product release of Mpro’s own unique C-terminal P2(Phe) cleavage site to prevent autoinhibition. We characterize the underlying noncovalent interactions governing binding and specificity for this diverse set of substrates, showing remarkable plasticity for subsites beyond the anchoring P1(Gln)-P2(Leu/Val/Phe), representing together a near complete analysis of a multiprocessing viral protease. Collectively, these crystallographic snapshots provide valuable mechanistic and structural insights for antiviral therapeutic development.

Suggested Citation

  • Jaeyong Lee & Calem Kenward & Liam J. Worrall & Marija Vuckovic & Francesco Gentile & Anh-Tien Ton & Myles Ng & Artem Cherkasov & Natalie C. J. Strynadka & Mark Paetzel, 2022. "X-ray crystallographic characterization of the SARS-CoV-2 main protease polyprotein cleavage sites essential for viral processing and maturation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32854-4
    DOI: 10.1038/s41467-022-32854-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32854-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32854-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    2. Lifeng Fu & Fei Ye & Yong Feng & Feng Yu & Qisheng Wang & Yan Wu & Cheng Zhao & Huan Sun & Baoying Huang & Peihua Niu & Hao Song & Yi Shi & Xuebing Li & Wenjie Tan & Jianxun Qi & George Fu Gao, 2020. "Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    3. Alice Douangamath & Daren Fearon & Paul Gehrtz & Tobias Krojer & Petra Lukacik & C. David Owen & Efrat Resnick & Claire Strain-Damerell & Anthony Aimon & Péter Ábrányi-Balogh & José Brandão-Neto & Ann, 2020. "Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    4. Fan Wu & Su Zhao & Bin Yu & Yan-Mei Chen & Wen Wang & Zhi-Gang Song & Yi Hu & Zhao-Wu Tao & Jun-Hua Tian & Yuan-Yuan Pei & Ming-Li Yuan & Yu-Ling Zhang & Fa-Hui Dai & Yi Liu & Qi-Min Wang & Jiao-Jiao , 2020. "Author Correction: A new coronavirus associated with human respiratory disease in China," Nature, Nature, vol. 580(7803), pages 7-7, April.
    5. Peng Zhou & Xing-Lou Yang & Xian-Guang Wang & Ben Hu & Lei Zhang & Wei Zhang & Hao-Rui Si & Yan Zhu & Bei Li & Chao-Lin Huang & Hui-Dong Chen & Jing Chen & Yun Luo & Hua Guo & Ren-Di Jiang & Mei-Qin L, 2020. "Addendum: A pneumonia outbreak associated with a new coronavirus of probable bat origin," Nature, Nature, vol. 588(7836), pages 6-6, December.
    6. Peng Zhou & Xing-Lou Yang & Xian-Guang Wang & Ben Hu & Lei Zhang & Wei Zhang & Hao-Rui Si & Yan Zhu & Bei Li & Chao-Lin Huang & Hui-Dong Chen & Jing Chen & Yun Luo & Hua Guo & Ren-Di Jiang & Mei-Qin L, 2020. "A pneumonia outbreak associated with a new coronavirus of probable bat origin," Nature, Nature, vol. 579(7798), pages 270-273, March.
    7. Jaeyong Lee & Liam J. Worrall & Marija Vuckovic & Federico I. Rosell & Francesco Gentile & Anh-Tien Ton & Nathanael A. Caveney & Fuqiang Ban & Artem Cherkasov & Mark Paetzel & Natalie C. J. Strynadka, 2020. "Crystallographic structure of wild-type SARS-CoV-2 main protease acyl-enzyme intermediate with physiological C-terminal autoprocessing site," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    8. Zhenming Jin & Xiaoyu Du & Yechun Xu & Yongqiang Deng & Meiqin Liu & Yao Zhao & Bing Zhang & Xiaofeng Li & Leike Zhang & Chao Peng & Yinkai Duan & Jing Yu & Lin Wang & Kailin Yang & Fengjiang Liu & Re, 2020. "Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors," Nature, Nature, vol. 582(7811), pages 289-293, June.
    9. Fan Wu & Su Zhao & Bin Yu & Yan-Mei Chen & Wen Wang & Zhi-Gang Song & Yi Hu & Zhao-Wu Tao & Jun-Hua Tian & Yuan-Yuan Pei & Ming-Li Yuan & Yu-Ling Zhang & Fa-Hui Dai & Yi Liu & Qi-Min Wang & Jiao-Jiao , 2020. "A new coronavirus associated with human respiratory disease in China," Nature, Nature, vol. 579(7798), pages 265-269, March.
    10. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    11. Daniel W. Kneller & Gwyndalyn Phillips & Hugh M. O’Neill & Robert Jedrzejczak & Lucy Stols & Paul Langan & Andrzej Joachimiak & Leighton Coates & Andrey Kovalevsky, 2020. "Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallography," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    12. Wayne Vuong & Muhammad Bashir Khan & Conrad Fischer & Elena Arutyunova & Tess Lamer & Justin Shields & Holly A. Saffran & Ryan T. McKay & Marco J. Belkum & Michael A. Joyce & Howard S. Young & D. Lorn, 2020. "Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    13. Wayne Vuong & Muhammad Bashir Khan & Conrad Fischer & Elena Arutyunova & Tess Lamer & Justin Shields & Holly A. Saffran & Ryan T. McKay & Marco J. Belkum & Michael A. Joyce & Howard S. Young & D. Lorn, 2020. "Author Correction: Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pawel M. Wydorski & Jerzy Osipiuk & Benjamin T. Lanham & Christine Tesar & Michael Endres & Elizabeth Engle & Robert Jedrzejczak & Vishruth Mullapudi & Karolina Michalska & Krzysztof Fidelis & David F, 2023. "Dual domain recognition determines SARS-CoV-2 PLpro selectivity for human ISG15 and K48-linked di-ubiquitin," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hengrui Liu & Sho Iketani & Arie Zask & Nisha Khanizeman & Eva Bednarova & Farhad Forouhar & Brandon Fowler & Seo Jung Hong & Hiroshi Mohri & Manoj S. Nair & Yaoxing Huang & Nicholas E. S. Tay & Sumin, 2022. "Development of optimized drug-like small molecule inhibitors of the SARS-CoV-2 3CL protease for treatment of COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Jun-Yu Si & Yuan-Mei Chen & Ye-Hui Sun & Meng-Xue Gu & Mei-Ling Huang & Lu-Lu Shi & Xiao Yu & Xiao Yang & Qing Xiong & Cheng-Bao Ma & Peng Liu & Zheng-Li Shi & Huan Yan, 2024. "Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Gabriela Dias Noske & Yun Song & Rafaela Sachetto Fernandes & Rod Chalk & Haitem Elmassoudi & Lizbé Koekemoer & C. David Owen & Tarick J. El-Baba & Carol V. Robinson & Glaucius Oliva & Andre Schutzer , 2023. "An in-solution snapshot of SARS-COV-2 main protease maturation process and inhibition," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Eugene Song & Jae-Eun Lee & Seola Kwon, 2021. "Effect of Public Empathy with Infection-Control Guidelines on Infection-Prevention Attitudes and Behaviors: Based on the Case of COVID-19," IJERPH, MDPI, vol. 18(24), pages 1-18, December.
    5. Jing Wang & Yuan-fei Pan & Li-fen Yang & Wei-hong Yang & Kexin Lv & Chu-ming Luo & Juan Wang & Guo-peng Kuang & Wei-chen Wu & Qin-yu Gou & Gen-yang Xin & Bo Li & Huan-le Luo & Shoudeng Chen & Yue-long, 2023. "Individual bat virome analysis reveals co-infection and spillover among bats and virus zoonotic potential," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Maria de Lourdes Aguiar-Oliveira & Aline Campos & Aline R. Matos & Caroline Rigotto & Adriana Sotero-Martins & Paulo F. P. Teixeira & Marilda M. Siqueira, 2020. "Wastewater-Based Epidemiology (WBE) and Viral Detection in Polluted Surface Water: A Valuable Tool for COVID-19 Surveillance—A Brief Review," IJERPH, MDPI, vol. 17(24), pages 1-19, December.
    7. Yongin Choi & James Slghee Kim & Heejin Choi & Hyojung Lee & Chang Hyeong Lee, 2020. "Assessment of Social Distancing for Controlling COVID-19 in Korea: An Age-Structured Modeling Approach," IJERPH, MDPI, vol. 17(20), pages 1-16, October.
    8. Daniel W. Kneller & Hui Li & Gwyndalyn Phillips & Kevin L. Weiss & Qiu Zhang & Mark A. Arnould & Colleen B. Jonsson & Surekha Surendranathan & Jyothi Parvathareddy & Matthew P. Blakeley & Leighton Coa, 2022. "Covalent narlaprevir- and boceprevir-derived hybrid inhibitors of SARS-CoV-2 main protease," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Peter Radvak & Hyung-Joon Kwon & Martina Kosikova & Uriel Ortega-Rodriguez & Ruoxuan Xiang & Je-Nie Phue & Rong-Fong Shen & James Rozzelle & Neeraj Kapoor & Taylor Rabara & Jeff Fairman & Hang Xie, 2021. "SARS-CoV-2 B.1.1.7 (alpha) and B.1.351 (beta) variants induce pathogenic patterns in K18-hACE2 transgenic mice distinct from early strains," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    10. Bruno Palialol & Paula Pereda & Carlos Azzoni, 2020. "Does weather influence COVID‐19 transmission?," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(6), pages 981-1004, December.
    11. Xiaoming Hu & Shuang Wang & Shaotong Fu & Meng Qin & Chengliang Lyu & Zhaowen Ding & Yan Wang & Yishu Wang & Dongshu Wang & Li Zhu & Tao Jiang & Jing Sun & Hui Ding & Jie Wu & Lingqian Chang & Yimin C, 2023. "Intranasal mask for protecting the respiratory tract against viral aerosols," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    12. Phanramphoei N. Frantz & Aleksandr Barinov & Claude Ruffié & Chantal Combredet & Valérie Najburg & Guilherme Dias de Melo & Florence Larrous & Lauriane Kergoat & Samaporn Teeravechyan & Anan Jongkaeww, 2021. "A live measles-vectored COVID-19 vaccine induces strong immunity and protection from SARS-CoV-2 challenge in mice and hamsters," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    13. Fabian Zech & Daniel Schniertshauer & Christoph Jung & Alexandra Herrmann & Arne Cordsmeier & Qinya Xie & Rayhane Nchioua & Caterina Prelli Bozzo & Meta Volcic & Lennart Koepke & Janis A. Müller & Jan, 2021. "Spike residue 403 affects binding of coronavirus spikes to human ACE2," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    14. Zexun Chen & Sean Kelty & Alexandre G. Evsukoff & Brooke Foucault Welles & James Bagrow & Ronaldo Menezes & Gourab Ghoshal, 2022. "Contrasting social and non-social sources of predictability in human mobility," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Muhammad Azher Hassan & Tariq Mehmood & Ehtisham Lodhi & Muhammad Bilal & Afzal Ahmed Dar & Junjie Liu, 2022. "Lockdown Amid COVID-19 Ascendancy over Ambient Particulate Matter Pollution Anomaly," IJERPH, MDPI, vol. 19(20), pages 1-31, October.
    16. Hubert Dobrowolski & Dariusz Włodarek, 2021. "Body Mass, Physical Activity and Eating Habits Changes during the First COVID-19 Pandemic Lockdown in Poland," IJERPH, MDPI, vol. 18(11), pages 1-9, May.
    17. Frederick Ahen, 2022. "Community-Level Health Interventions are Crucial in the Post-COVID-19 Era: Lessons from Africa’s Proactive Public Health Policy Interventions," Humanistic Management Journal, Springer, vol. 7(3), pages 369-390, December.
    18. Muhammad Moazzam & Muhammad Imran Sajid & Hamza Shahid & Jahanzaib Butt & Irfan Bashir & Muhammad Jamshaid & Amir Nasrolahi Shirazi & Rakesh Kumar Tiwari, 2020. "Understanding COVID-19: From Origin to Potential Therapeutics," IJERPH, MDPI, vol. 17(16), pages 1-22, August.
    19. Tasos Stylianou & Konstantinos Ntelas, 2023. "Impact of COVID-19 Pandemic on Mental Health and Socioeconomic Aspects in Greece," IJERPH, MDPI, vol. 20(3), pages 1-21, January.
    20. Jerzy Sienko & Izabela Marczak & Maciej Kotowski & Anna Bogacz & Karol Tejchman & Magdalena Sienko & Katarzyna Kotfis, 2022. "Association of ACE2 Gene Variants with the Severity of COVID-19 Disease—A Prospective Observational Study," IJERPH, MDPI, vol. 19(19), pages 1-8, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32854-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.