IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43394-w.html
   My bibliography  Save this article

Ultrasmall and tunable TeraHertz surface plasmon cavities at the ultimate plasmonic limit

Author

Listed:
  • Ian Aupiais

    (CNRS, Ecole Polytechnique, Institut Polytechnique de Paris)

  • Romain Grasset

    (CNRS, Ecole Polytechnique, Institut Polytechnique de Paris)

  • Tingwen Guo

    (CNRS, Ecole Polytechnique, Institut Polytechnique de Paris)

  • Dmitri Daineka

    (CNRS, Ecole Polytechnique, Institut Polytechnique de Paris)

  • Javier Briatico

    (CNRS, Thales, Université Paris Saclay)

  • Sarah Houver

    (Université Paris Cité, CNRS)

  • Luca Perfetti

    (CNRS, Ecole Polytechnique, Institut Polytechnique de Paris)

  • Jean-Paul Hugonin

    (Université Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry)

  • Jean-Jacques Greffet

    (Université Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry)

  • Yannis Laplace

    (CNRS, Ecole Polytechnique, Institut Polytechnique de Paris)

Abstract

The ability to confine THz photons inside deep-subwavelength cavities promises a transformative impact for THz light engineering with metamaterials and for realizing ultrastrong light-matter coupling at the single emitter level. To that end, the most successful approach taken so far has relied on cavity architectures based on metals, for their ability to constrain the spread of electromagnetic fields and tailor geometrically their resonant behavior. Here, we experimentally demonstrate a comparatively high level of confinement by exploiting a plasmonic mechanism based on localized THz surface plasmon modes in bulk semiconductors. We achieve plasmonic confinement at around 1 THz into record breaking small footprint THz cavities exhibiting mode volumes as low as $${V}_{cav}/{\lambda }_{0}^{3} \sim 1{0}^{-7}-1{0}^{-8}$$ V c a v / λ 0 3 ~ 1 0 − 7 − 1 0 − 8 , excellent coupling efficiencies and a large frequency tunability with temperature. Notably, we find that plasmonic-based THz cavities can operate until the emergence of electromagnetic nonlocality and Landau damping, which together constitute a fundamental limit to plasmonic confinement. This work discloses nonlocal plasmonic phenomena at unprecedentedly low frequencies and large spatial scales and opens the door to novel types of ultrastrong light-matter interaction experiments thanks to the plasmonic tunability.

Suggested Citation

  • Ian Aupiais & Romain Grasset & Tingwen Guo & Dmitri Daineka & Javier Briatico & Sarah Houver & Luca Perfetti & Jean-Paul Hugonin & Jean-Jacques Greffet & Yannis Laplace, 2023. "Ultrasmall and tunable TeraHertz surface plasmon cavities at the ultimate plasmonic limit," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43394-w
    DOI: 10.1038/s41467-023-43394-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43394-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43394-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. N. A. Mortensen & S. Raza & M. Wubs & T. Søndergaard & S. I. Bozhevolnyi, 2014. "A generalized non-local optical response theory for plasmonic nanostructures," Nature Communications, Nature, vol. 5(1), pages 1-7, September.
    2. Hou-Tong Chen & Willie J. Padilla & Joshua M. O. Zide & Arthur C. Gossard & Antoinette J. Taylor & Richard D. Averitt, 2006. "Active terahertz metamaterial devices," Nature, Nature, vol. 444(7119), pages 597-600, November.
    3. Yi Yang & Di Zhu & Wei Yan & Akshay Agarwal & Mengjie Zheng & John D. Joannopoulos & Philippe Lalanne & Thomas Christensen & Karl K. Berggren & Marin Soljačić, 2019. "A general theoretical and experimental framework for nanoscale electromagnetism," Nature, Nature, vol. 576(7786), pages 248-252, December.
    4. G. X. Ni & A. S. McLeod & Z. Sun & L. Wang & L. Xiong & K. W. Post & S. S. Sunku & B.-Y. Jiang & J. Hone & C. R. Dean & M. M. Fogler & D. N. Basov, 2018. "Fundamental limits to graphene plasmonics," Nature, Nature, vol. 557(7706), pages 530-533, May.
    5. Sergejs Boroviks & Zhan-Hong Lin & Vladimir A. Zenin & Mario Ziegler & Andrea Dellith & P. A. D. Gonçalves & Christian Wolff & Sergey I. Bozhevolnyi & Jer-Shing Huang & N. Asger Mortensen, 2022. "Extremely confined gap plasmon modes: when nonlocality matters," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Jinchao Tong & Wei Zhou & Yue Qu & Zhengji Xu & Zhiming Huang & Dao Hua Zhang, 2017. "Surface plasmon induced direct detection of long wavelength photons," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Yahong & Zhu, Quanyong, 2017. "New analytic solutions of two-dimensional nonlocal nonlinear media," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 53-61.
    2. Sergejs Boroviks & Zhan-Hong Lin & Vladimir A. Zenin & Mario Ziegler & Andrea Dellith & P. A. D. Gonçalves & Christian Wolff & Sergey I. Bozhevolnyi & Jer-Shing Huang & N. Asger Mortensen, 2022. "Extremely confined gap plasmon modes: when nonlocality matters," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. S. W. Jun & Y. H. Ahn, 2022. "Terahertz thermal curve analysis for label-free identification of pathogens," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Hongwei Wang & Anshuman Kumar & Siyuan Dai & Xiao Lin & Zubin Jacob & Sang-Hyun Oh & Vinod Menon & Evgenii Narimanov & Young Duck Kim & Jian-Ping Wang & Phaedon Avouris & Luis Martin Moreno & Joshua C, 2024. "Planar hyperbolic polaritons in 2D van der Waals materials," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Marcus Albrechtsen & Babak Vosoughi Lahijani & Rasmus Ellebæk Christiansen & Vy Thi Hoang Nguyen & Laura Nevenka Casses & Søren Engelberth Hansen & Nicolas Stenger & Ole Sigmund & Henri Jansen & Jespe, 2022. "Nanometer-scale photon confinement in topology-optimized dielectric cavities," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Hiroki Takeshita & Ashif Aminulloh Fathnan & Daisuke Nita & Atsuko Nagata & Shinya Sugiura & Hiroki Wakatsuchi, 2024. "Frequency-hopping wave engineering with metasurfaces," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Xin He & Jonathan M. Larson & Hans A. Bechtel & Robert Kostecki, 2022. "In situ infrared nanospectroscopy of the local processes at the Li/polymer electrolyte interface," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Sang Hyun Park & Michael Sammon & Eugene Mele & Tony Low, 2022. "Plasmonic gain in current biased tilted Dirac nodes," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    9. Valerio Di Giulio & P. A. D. Gonçalves & F. Javier García de Abajo, 2022. "An image interaction approach to quantum-phase engineering of two-dimensional materials," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Ni Zhang & Weiwei Luo & Lei Wang & Jiang Fan & Wei Wu & Mengxin Ren & Xinzheng Zhang & Wei Cai & Jingjun Xu, 2022. "Strong in-plane scattering of acoustic graphene plasmons by surface atomic steps," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    11. H. Shiravi & A. Gupta & B. R. Ortiz & S. Cui & B. Yu & E. Uykur & A. A. Tsirlin & S. D. Wilson & Z. Sun & G. X. Ni, 2024. "Plasmons in the Kagome metal CsV3Sb5," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    12. Hai Hu & Renwen Yu & Hanchao Teng & Debo Hu & Na Chen & Yunpeng Qu & Xiaoxia Yang & Xinzhong Chen & A. S. McLeod & Pablo Alonso-González & Xiangdong Guo & Chi Li & Ziheng Yao & Zhenjun Li & Jianing Ch, 2022. "Active control of micrometer plasmon propagation in suspended graphene," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Weihan Li & Qian Ma & Che Liu & Yunfeng Zhang & Xianning Wu & Jiawei Wang & Shizhao Gao & Tianshuo Qiu & Tonghao Liu & Qiang Xiao & Jiaxuan Wei & Ting Ting Gu & Zhize Zhou & Fashuai Li & Qiang Cheng &, 2023. "Intelligent metasurface system for automatic tracking of moving targets and wireless communications based on computer vision," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Li, Kun & Huang, Ting-Zhu & Li, Liang & Lanteri, Stéphane, 2019. "A reduced-order discontinuous Galerkin method based on a Krylov subspace technique in nanophotonics," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 128-145.
    15. Jiaojian Shi & Haowei Xu & Christian Heide & Changan HuangFu & Chenyi Xia & Felipe Quesada & Hongzhi Shen & Tianyi Zhang & Leo Yu & Amalya Johnson & Fang Liu & Enzheng Shi & Liying Jiao & Tony Heinz &, 2023. "Giant room-temperature nonlinearities in a monolayer Janus topological semiconductor," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43394-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.