IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53372-5.html
   My bibliography  Save this article

Tuning direct-written terahertz metadevices with organic mixed ion-electron conductors

Author

Listed:
  • Cristiano Bortolotti

    (Politecnico di Milano
    Istituto Italiano di Tecnologia)

  • Federico Grandi

    (Politecnico di Milano
    Consiglio Nazionale delle Ricerche)

  • Matteo Butti

    (Istituto Italiano di Tecnologia)

  • Lorenzo Gatto

    (Politecnico di Milano
    Consiglio Nazionale delle Ricerche
    Max-Planck-Institut für Quantenoptik)

  • Francesco Modena

    (Istituto Italiano di Tecnologia)

  • Christina Kousseff

    (University of Oxford)

  • Iain McCulloch

    (University of Oxford
    Princeton University)

  • Caterina Vozzi

    (Consiglio Nazionale delle Ricerche)

  • Mario Caironi

    (Istituto Italiano di Tecnologia)

  • Eugenio Cinquanta

    (Consiglio Nazionale delle Ricerche)

  • Giorgio Ernesto Bonacchini

    (Università degli Studi di Padova)

Abstract

In the past decade, organic mixed ion-electron conductors have been successfully adopted in innovative bioelectronic, neuromorphic, and electro-optical technologies, as well as in multiple energy harvesting and printed electronics applications. However, despite the intense research efforts devoted to these materials, organic mixed conductors have not yet found application in electronic/photonic devices operating in key regions of the electromagnetic spectrum, such as the microwave (>5 GHz) and terahertz (0.1-10 THz) ranges. A possible reason for this technological gap is the widespread notion that organic electronic materials are unsuitable for high-frequency applications. In this work, we demonstrate for the first time the utility of high-performance polymer mixed conductors as electro-active tuning layers in reconfigurable terahertz metasurfaces, achieving modulation performances comparable with state-of-the-art inorganic and 2D semiconductors. Through time-domain terahertz spectroscopy, we show that the large conductivity modulations of these polymers, until now probed only at very low frequencies, are effectively preserved in the terahertz range, leading to optimal metadevice reconfigurability. Finally, we leverage the unique processability of organic materials to develop fully direct-written electrically tuneable metasurfaces onto both rigid and flexible substrates, opening new opportunities for the mass-scale realization of flexible and light-weight terahertz optics with unique mechanical characteristics and environmental footprint.

Suggested Citation

  • Cristiano Bortolotti & Federico Grandi & Matteo Butti & Lorenzo Gatto & Francesco Modena & Christina Kousseff & Iain McCulloch & Caterina Vozzi & Mario Caironi & Eugenio Cinquanta & Giorgio Ernesto Bo, 2024. "Tuning direct-written terahertz metadevices with organic mixed ion-electron conductors," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53372-5
    DOI: 10.1038/s41467-024-53372-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53372-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53372-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hou-Tong Chen & Willie J. Padilla & Joshua M. O. Zide & Arthur C. Gossard & Antoinette J. Taylor & Richard D. Averitt, 2006. "Active terahertz metamaterial devices," Nature, Nature, vol. 444(7119), pages 597-600, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hiroki Takeshita & Ashif Aminulloh Fathnan & Daisuke Nita & Atsuko Nagata & Shinya Sugiura & Hiroki Wakatsuchi, 2024. "Frequency-hopping wave engineering with metasurfaces," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. S. W. Jun & Y. H. Ahn, 2022. "Terahertz thermal curve analysis for label-free identification of pathogens," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Weihan Li & Qian Ma & Che Liu & Yunfeng Zhang & Xianning Wu & Jiawei Wang & Shizhao Gao & Tianshuo Qiu & Tonghao Liu & Qiang Xiao & Jiaxuan Wei & Ting Ting Gu & Zhize Zhou & Fashuai Li & Qiang Cheng &, 2023. "Intelligent metasurface system for automatic tracking of moving targets and wireless communications based on computer vision," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Jiaojian Shi & Haowei Xu & Christian Heide & Changan HuangFu & Chenyi Xia & Felipe Quesada & Hongzhi Shen & Tianyi Zhang & Leo Yu & Amalya Johnson & Fang Liu & Enzheng Shi & Liying Jiao & Tony Heinz &, 2023. "Giant room-temperature nonlinearities in a monolayer Janus topological semiconductor," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Ian Aupiais & Romain Grasset & Tingwen Guo & Dmitri Daineka & Javier Briatico & Sarah Houver & Luca Perfetti & Jean-Paul Hugonin & Jean-Jacques Greffet & Yannis Laplace, 2023. "Ultrasmall and tunable TeraHertz surface plasmon cavities at the ultimate plasmonic limit," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53372-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.