IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43138-w.html
   My bibliography  Save this article

Operando Li metal plating diagnostics via MHz band electromagnetics

Author

Listed:
  • Masanori Ishigaki

    (Toyota Central R&D Labs., INC)

  • Keisuke Ishikawa

    (Toyota Central R&D Labs., INC)

  • Tsukasa Usuki

    (Toyota Central R&D Labs., INC)

  • Hiroki Kondo

    (Toyota Central R&D Labs., INC)

  • Shogo Komagata

    (Toyota Central R&D Labs., INC)

  • Tsuyoshi Sasaki

    (Toyota Central R&D Labs., INC)

Abstract

A nondestructive detection method for internal Li-metal plating in lithium-ion batteries is essential to improve their lifetime. Here, we demonstrate a direct Li-metal detection technology that focuses on electromagnetic behaviour. Through an interdisciplinary approach combining the ionic behaviour of electrochemical reactions at the negative electrode and the electromagnetic behaviour of electrons based on Maxwell’s equations, we find that internal Li-metal plating can be detected by the decrease in real part of the impedance at high-frequency. This finding enables simpler diagnostics when compared to data-driven analysis because we can correlate a direct response from the electronic behaviour to the metallic material property rather changes in the ionic behaviour. We test this response using commercial Li-ion batteries subject to extremely fast charging conditions to induce Li-metal plating. From this, we develop a battery sensor that detects and monitors the cycle-by-cycle growth of Li-metal plating. This work not only contributes to advancing future Li-ion battery development but may also serve as a tool for Li-metal plating monitoring in real-field applications to increase the useable lifetime of Li-ion batteries and to prevent detrimental Li-metal plating.

Suggested Citation

  • Masanori Ishigaki & Keisuke Ishikawa & Tsukasa Usuki & Hiroki Kondo & Shogo Komagata & Tsuyoshi Sasaki, 2023. "Operando Li metal plating diagnostics via MHz band electromagnetics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43138-w
    DOI: 10.1038/s41467-023-43138-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43138-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43138-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Haibo Huo & Yinjiao Xing & Michael Pecht & Benno J. Züger & Neeta Khare & Andrea Vezzini, 2017. "Safety Requirements for Transportation of Lithium Batteries," Energies, MDPI, vol. 10(6), pages 1-38, June.
    2. Gavin Harper & Roberto Sommerville & Emma Kendrick & Laura Driscoll & Peter Slater & Rustam Stolkin & Allan Walton & Paul Christensen & Oliver Heidrich & Simon Lambert & Andrew Abbott & Karl Ryder & L, 2019. "Recycling lithium-ion batteries from electric vehicles," Nature, Nature, vol. 575(7781), pages 75-86, November.
    3. J. S. Sander & R. M. Erb & L. Li & A. Gurijala & Y.-M. Chiang, 2016. "High-performance battery electrodes via magnetic templating," Nature Energy, Nature, vol. 1(8), pages 1-7, August.
    4. Anqi Zeng & Wu Chen & Kasper Dalgas Rasmussen & Xuehong Zhu & Maren Lundhaug & Daniel B. Müller & Juan Tan & Jakob K. Keiding & Litao Liu & Tao Dai & Anjian Wang & Gang Liu, 2022. "Battery technology and recycling alone will not save the electric mobility transition from future cobalt shortages," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Wasylowski & Heinrich Ditler & Morian Sonnet & Tim Falkenstein & Luca Leogrande & Emanuel Ronge & Alexander Blömeke & Andreas Würsig & Florian Ringbeck & Dirk Uwe Sauer, 2024. "Operando visualisation of lithium plating by ultrasound imaging of battery cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruifei Ma & Shengyu Tao & Xin Sun & Yifang Ren & Chongbo Sun & Guanjun Ji & Jiahe Xu & Xuecen Wang & Xuan Zhang & Qiuwei Wu & Guangmin Zhou, 2024. "Pathway decisions for reuse and recycling of retired lithium-ion batteries considering economic and environmental functions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Ma, Tian & Zhang, Qi & Tang, Yanyan & Liu, Boyu & Li, Yan & Wang, Lu, 2024. "A review on the industrial chain of recycling critical metals from electric vehicle batteries: Current status, challenges, and policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    3. Wesselkämper, Jannis & Dahrendorf, Laureen & Mauler, Lukas & Lux, Simon & von Delft, Stephan, 2024. "Towards circular battery supply chains: Strategies to reduce material demand and the impact on mining and recycling," Resources Policy, Elsevier, vol. 95(C).
    4. Zhou, Yuekuan, 2024. "Lifecycle battery carbon footprint analysis for battery sustainability with energy digitalization and artificial intelligence," Applied Energy, Elsevier, vol. 371(C).
    5. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    6. Yang, Jingluan & Chen, Wei, 2023. "Unravelling the landscape of global cobalt trade: Patterns, robustness, and supply chain security," Resources Policy, Elsevier, vol. 86(PB).
    7. Kılkış, Şiir & Ulpiani, Giulia & Vetters, Nadja, 2024. "Visions for climate neutrality and opportunities for co-learning in European cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    8. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    9. Adeline Gu'eret & Wolf-Peter Schill & Carlos Gaete-Morales, 2024. "Impacts of electric carsharing on a power sector with variable renewables," Papers 2402.19380, arXiv.org, revised Oct 2024.
    10. Fatmawati Fatmawati & Nuryanti Mustari & Haerana Haerana & Risma Niswaty & Abdillah Abdillah, 2022. "Waste Bank Policy Implementation through Collaborative Approach: Comparative Study—Makassar and Bantaeng, Indonesia," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    11. Andrzej Pacana & Dominika Siwiec & Robert Ulewicz & Malgorzata Ulewicz, 2024. "A Novelty Model Employing the Quality Life Cycle Assessment (QLCA) Indicator and Frameworks for Selecting Qualitative and Environmental Aspects for Sustainable Product Development," Sustainability, MDPI, vol. 16(17), pages 1-24, September.
    12. Arjun K. Thapa & Abhinav C. Nouduri & Mohammed Mohiuddin & Hari Prasad Reddy Kannapu & Lihui Bai & Hui Wang & Mahendra K. Sunkara, 2024. "Recycling and Reuse of Mn-Based Spinel Electrode from Spent Lithium-Ion Batteries," Energies, MDPI, vol. 17(16), pages 1-13, August.
    13. Longxiang Liu & Liqun Kang & Jianrui Feng & David G. Hopkinson & Christopher S. Allen & Yeshu Tan & Hao Gu & Iuliia Mikulska & Veronica Celorrio & Diego Gianolio & Tianlei Wang & Liquan Zhang & Kaiqi , 2024. "Atomically dispersed asymmetric cobalt electrocatalyst for efficient hydrogen peroxide production in neutral media," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Erick C. Jones, 2024. "Lithium Supply Chain Optimization: A Global Analysis of Critical Minerals for Batteries," Energies, MDPI, vol. 17(11), pages 1-31, May.
    15. Zhaosheng Zhang & Shuo Wang & Ni Lin & Zhenpo Wang & Peng Liu, 2023. "State of Health Estimation of Lithium-Ion Batteries in Electric Vehicles Based on Regional Capacity and LGBM," Sustainability, MDPI, vol. 15(3), pages 1-20, January.
    16. Guohao Li & Tao Wang, 2022. "Long-Term Leases vs. One-Off Purchases: Game Analysis on Battery Swapping Mode Considering Cascade Utilization and Power Structure," Sustainability, MDPI, vol. 14(24), pages 1-28, December.
    17. Christensen, Paul A. & Anderson, Paul A. & Harper, Gavin D.J. & Lambert, Simon M. & Mrozik, Wojciech & Rajaeifar, Mohammad Ali & Wise, Malcolm S. & Heidrich, Oliver, 2021. "Risk management over the life cycle of lithium-ion batteries in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    18. Jay N. Meegoda & Sarvagna Malladi & Isabel C. Zayas, 2022. "End-of-Life Management of Electric Vehicle Lithium-Ion Batteries in the United States," Clean Technol., MDPI, vol. 4(4), pages 1-13, November.
    19. Jain, Monika & Singh, Archana, 2024. "An empirical study on electric vehicle adoption in India: A step towards a greener environment," Transport Policy, Elsevier, vol. 156(C), pages 112-125.
    20. Miller, Hugh & Dikau, Simon & Svartzman, Romain & Dees, Stéphane, 2023. "The stumbling block in ‘the race of our lives’: transition-critical materials, financial risks and the NGFS climate scenarios," LSE Research Online Documents on Economics 118095, London School of Economics and Political Science, LSE Library.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43138-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.