IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v567y2019i7746d10.1038_s41586-019-0963-3.html
   My bibliography  Save this article

Neuromodulatory control of localized dendritic spiking in critical period cortex

Author

Listed:
  • Courtney E. Yaeger

    (David Geffen School of Medicine at UCLA)

  • Dario L. Ringach

    (David Geffen School of Medicine at UCLA
    University of California)

  • Joshua T. Trachtenberg

    (David Geffen School of Medicine at UCLA)

Abstract

Sensory experience in early postnatal life, during so-called critical periods, restructures neural circuitry to enhance information processing1. Why the cortex is susceptible to sensory instruction in early life and why this susceptibility wanes with age are unclear. Here we define a developmentally restricted engagement of inhibitory circuitry that shapes localized dendritic activity and is needed for vision to drive the emergence of binocular visual responses in the mouse primary visual cortex. We find that at the peak of the critical period for binocular plasticity, acetylcholine released from the basal forebrain during periods of heightened arousal directly excites somatostatin (SST)-expressing interneurons. Their inhibition of pyramidal cell dendrites and of fast-spiking, parvalbumin-expressing interneurons enhances branch-specific dendritic responses and somatic spike rates within pyramidal cells. By adulthood, this cholinergic sensitivity is lost, and compartmentalized dendritic responses are absent but can be re-instated by optogenetic activation of SST cells. Conversely, suppressing SST cell activity during the critical period prevents the normal development of binocular receptive fields by impairing the maturation of ipsilateral eye inputs. This transient cholinergic modulation of SST cells, therefore, seems to orchestrate two features of neural plasticity—somatic disinhibition and compartmentalized dendritic spiking. Loss of this modulation may contribute to critical period closure.

Suggested Citation

  • Courtney E. Yaeger & Dario L. Ringach & Joshua T. Trachtenberg, 2019. "Neuromodulatory control of localized dendritic spiking in critical period cortex," Nature, Nature, vol. 567(7746), pages 100-104, March.
  • Handle: RePEc:nat:nature:v:567:y:2019:i:7746:d:10.1038_s41586-019-0963-3
    DOI: 10.1038/s41586-019-0963-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-0963-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-0963-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bryce D. Grier & Samuel Parkins & Jarra Omar & Hey-Kyoung Lee, 2023. "Selective plasticity of fast and slow excitatory synapses on somatostatin interneurons in adult visual cortex," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:567:y:2019:i:7746:d:10.1038_s41586-019-0963-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.