IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v39y1998i3p245-254.html
   My bibliography  Save this article

On mode testing and empirical approximations to distributions

Author

Listed:
  • Cheng, Ming-Yen
  • Hall, Peter

Abstract

There are close connections between the theory of statistical inference under order restrictions and the theory of tests for unimodality. In particular, a result of Kiefer and Wolfowitz, on the error of convex approximations to empirical distribution functions, is basic to limit theory for the dip test for unimodality. We develop a version of Kiefer and Wolfowitz' result in the context of distributions that are strongly unimodal, and apply it and related limit theory to compare the powers, against local alternatives, of three different tests of unimodality. In this context it is shown that the dip, excess mass and bandwidth tests are all able to detect departures of size n-3/5 (measured in terms of the distribution function) from the null hypothesis, where n denotes sample size; but are not able to detect departures of smaller order. Thus, they have similar powers.

Suggested Citation

  • Cheng, Ming-Yen & Hall, Peter, 1998. "On mode testing and empirical approximations to distributions," Statistics & Probability Letters, Elsevier, vol. 39(3), pages 245-254, August.
  • Handle: RePEc:eee:stapro:v:39:y:1998:i:3:p:245-254
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(98)00058-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hall, Peter & Titterington, D. M., 1988. "On confidence bands in nonparametric density estimation and regression," Journal of Multivariate Analysis, Elsevier, vol. 27(1), pages 228-254, October.
    2. P. M. Hartigan, 1985. "Computation of the Dip Statistic to Test for Unimodality," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 34(3), pages 320-325, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hsu, Chih-Yuan & Wu, Tiee-Jian, 2013. "Efficient estimation of the mode of continuous multivariate data," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 148-159.
    2. Polonik, Wolfgang & Wang, Zailong, 2005. "Estimation of regression contour clusters--an application of the excess mass approach to regression," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 227-249, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamie L. Cross & Lennart Hoogerheide & Paul Labonne & Herman K. van Dijk, 2024. "Flexible Negative Binomial Mixtures for Credible Mode Inference in Heterogeneous Count Data from Finance, Economics and Bioinformatics," Tinbergen Institute Discussion Papers 24-056/III, Tinbergen Institute.
    2. Chacón, José E. & Fernández Serrano, Javier, 2024. "Bayesian taut splines for estimating the number of modes," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    3. Liugen Xue, 2010. "Empirical Likelihood Local Polynomial Regression Analysis of Clustered Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 644-663, December.
    4. James Mitchell & Aubrey Poon & Dan Zhu, 2024. "Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 790-812, August.
    5. Massimo G. Colombo & Chiara Franzoni & Cristina Rossi–Lamastra, 2015. "Internal Social Capital and the Attraction of Early Contributions in Crowdfunding," Entrepreneurship Theory and Practice, , vol. 39(1), pages 75-100, January.
    6. Mikael Juselius & Nikola Tarashev, 2022. "When uncertainty decouples expected and unexpected losses," BIS Working Papers 995, Bank for International Settlements.
    7. Suren Basov & Svetlana Danilkina & David Prentice, 2020. "When Does Variety Increase with Quality?," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 56(3), pages 463-487, May.
    8. Mariani, Fabio & Pérez-Barahona, Agustín & Raffin, Natacha, 2010. "Life expectancy and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 798-815, April.
    9. Jing Li, 2021. "Block bootstrap prediction intervals for parsimonious first‐order vector autoregression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 512-527, April.
    10. Firmin Doko Tchatoka & Qazi Haque & Madison Terrell, 2022. "Monetary policy shocks and exchange rate dynamics in small open economies," CAMA Working Papers 2022-15, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    11. Jesus Fernandez-Villaverde & Federico Mandelman & Francesco Zanetti & Yang Yu, 2018. "Search Complementarities, Aggregate Fluctuations and Fiscal Policy," 2018 Meeting Papers 386, Society for Economic Dynamics.
    12. Sunandan Ghosh & Vinoj Abraham, 2021. "The Case of the ‘Missing Middle’ in the Indian Manufacturing Sector: A Firm Level Analysis," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 161-179, March.
    13. Weichi Wu & Zhou Zhou, 2017. "Nonparametric Inference for Time-Varying Coefficient Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 98-109, January.
    14. Motegi, Ryosuke & Seki, Yoichi, 2023. "SMLSOM: The shrinking maximum likelihood self-organizing map," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    15. Lei Gao & Li Wang, 2011. "Security price responses to unexpected earnings: a nonparametric investigation," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(2), pages 241-258, June.
    16. Álvarez, Adolfo, 2013. "Recombining partitions via unimodality tests," DES - Working Papers. Statistics and Econometrics. WS ws130706, Universidad Carlos III de Madrid. Departamento de Estadística.
    17. Li Cai & Lijie Gu & Qihua Wang & Suojin Wang, 2021. "Simultaneous confidence bands for nonparametric regression with missing covariate data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1249-1279, December.
    18. Deversi, Marvin & Ispano, Alessandro & Schwardmann, Peter, 2021. "Spin doctors: An experiment on vague disclosure," European Economic Review, Elsevier, vol. 139(C).
    19. Jozef Barunik & Jiri Kukacka, 2015. "Realizing stock market crashes: stochastic cusp catastrophe model of returns under time-varying volatility," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 959-973, June.
    20. Guillermo Martínez-Flórez & David Elal-Olivero & Carlos Barrera-Causil, 2021. "Extended Generalized Sinh-Normal Distribution," Mathematics, MDPI, vol. 9(21), pages 1-24, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:39:y:1998:i:3:p:245-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.