IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42870-7.html
   My bibliography  Save this article

An invertible, invariant crystal representation for inverse design of solid-state materials using generative deep learning

Author

Listed:
  • Hang Xiao

    (Lingnan University)

  • Rong Li

    (Northwest University)

  • Xiaoyang Shi

    (State University of New York at Albany)

  • Yan Chen

    (Xi’an Jiaotong University)

  • Liangliang Zhu

    (Northwest University
    Shaanxi Institute of Energy and Chemical Engineering)

  • Xi Chen

    (Lingnan University)

  • Lei Wang

    (Nanjing University
    Nanjing University)

Abstract

The past decade has witnessed rapid progress in deep learning for molecular design, owing to the availability of invertible and invariant representations for molecules such as simplified molecular-input line-entry system (SMILES), which has powered cheminformatics since the late 1980s. However, the design of elemental components and their structural arrangement in solid-state materials to achieve certain desired properties is still a long-standing challenge in physics, chemistry and biology. This is primarily due to, unlike molecular inverse design, the lack of an invertible crystal representation that satisfies translational, rotational, and permutational invariances. To address this issue, we have developed a simplified line-input crystal-encoding system (SLICES), which is a string-based crystal representation that satisfies both invertibility and invariances. The reconstruction routine of SLICES successfully reconstructed 94.95% of over 40,000 structurally and chemically diverse crystal structures, showcasing an unprecedented invertibility. Furthermore, by only encoding compositional and topological data, SLICES guarantees invariances. We demonstrate the application of SLICES in the inverse design of direct narrow-gap semiconductors for optoelectronic applications. As a string-based, invertible, and invariant crystal representation, SLICES shows promise as a useful tool for in silico materials discovery.

Suggested Citation

  • Hang Xiao & Rong Li & Xiaoyang Shi & Yan Chen & Liangliang Zhu & Xi Chen & Lei Wang, 2023. "An invertible, invariant crystal representation for inverse design of solid-state materials using generative deep learning," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42870-7
    DOI: 10.1038/s41467-023-42870-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42870-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42870-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marwin H. S. Segler & Mike Preuss & Mark P. Waller, 2018. "Planning chemical syntheses with deep neural networks and symbolic AI," Nature, Nature, vol. 555(7698), pages 604-610, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia-Min Lu & Hui-Feng Wang & Qi-Hang Guo & Jian-Wei Wang & Tong-Tong Li & Ke-Xin Chen & Meng-Ting Zhang & Jian-Bo Chen & Qian-Nuan Shi & Yi Huang & Shao-Wen Shi & Guang-Yong Chen & Jian-Zhang Pan & Zh, 2024. "Roboticized AI-assisted microfluidic photocatalytic synthesis and screening up to 10,000 reactions per day," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Naudé, Wim, 2020. "Artificial Intelligence against COVID-19: An Early Review," IZA Discussion Papers 13110, Institute of Labor Economics (IZA).
    3. Yuqiang Han & Xiaoyang Xu & Chang-Yu Hsieh & Keyan Ding & Hongxia Xu & Renjun Xu & Tingjun Hou & Qiang Zhang & Huajun Chen, 2024. "Retrosynthesis prediction with an iterative string editing model," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Mochen Liao & Kai Lan & Yuan Yao, 2022. "Sustainability implications of artificial intelligence in the chemical industry: A conceptual framework," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 164-182, February.
    5. Shingo Harada & Hiroki Takenaka & Tsubasa Ito & Haruki Kanda & Tetsuhiro Nemoto, 2024. "Valence-isomer selective cycloaddition reaction of cycloheptatrienes-norcaradienes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Wenhao Gao & Priyanka Raghavan & Connor W. Coley, 2022. "Autonomous platforms for data-driven organic synthesis," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    7. Debesh Mishra & Biswajit Mohapatra & Abhaya Sanatan Satpathy & Kamalakanta Muduli & Binayak Mishra & Swagatika Mishra & Upma Paliwal, 2024. "The pandemic COVID-19 and associated challenges with implementation of artificial intelligence (AI) in Indian agriculture," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(6), pages 2715-2729, June.
    8. Itai Levin & Mengjie Liu & Christopher A. Voigt & Connor W. Coley, 2022. "Merging enzymatic and synthetic chemistry with computational synthesis planning," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Marcel Rolf Pfeifer, 2021. "Development of a Smart Manufacturing Execution System Architecture for SMEs: A Czech Case Study," Sustainability, MDPI, vol. 13(18), pages 1-23, September.
    10. M. Saqlain & S. Ali & J. Y. Lee, 2023. "A Monte-Carlo tree search algorithm for the flexible job-shop scheduling in manufacturing systems," Flexible Services and Manufacturing Journal, Springer, vol. 35(2), pages 548-571, June.
    11. Zhao, Jingyuan & Feng, Xuning & Wang, Junbin & Lian, Yubo & Ouyang, Minggao & Burke, Andrew F., 2023. "Battery fault diagnosis and failure prognosis for electric vehicles using spatio-temporal transformer networks," Applied Energy, Elsevier, vol. 352(C).
    12. Lu Liu & Benjamin F. Jones & Brian Uzzi & Dashun Wang, 2023. "Data, measurement and empirical methods in the science of science," Nature Human Behaviour, Nature, vol. 7(7), pages 1046-1058, July.
    13. Nathan J. Szymanski & Pragnay Nevatia & Christopher J. Bartel & Yan Zeng & Gerbrand Ceder, 2023. "Autonomous and dynamic precursor selection for solid-state materials synthesis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Umit V. Ucak & Islambek Ashyrmamatov & Junsu Ko & Juyong Lee, 2022. "Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Yuanyuan Jiang & Zongwei Yang & Jiali Guo & Hongzhen Li & Yijing Liu & Yanzhi Guo & Menglong Li & Xuemei Pu, 2021. "Coupling complementary strategy to flexible graph neural network for quick discovery of coformer in diverse co-crystal materials," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    16. Shuangjia Zheng & Tao Zeng & Chengtao Li & Binghong Chen & Connor W. Coley & Yuedong Yang & Ruibo Wu, 2022. "Deep learning driven biosynthetic pathways navigation for natural products with BioNavi-NP," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. de Mars, Patrick & O’Sullivan, Aidan, 2021. "Applying reinforcement learning and tree search to the unit commitment problem," Applied Energy, Elsevier, vol. 302(C).
    18. Fernando Martinez-Plumed & Emilia Gomez Gutierrez & Jose Hernandez-Orallo, 2020. "AI Watch Assessing Technology Readiness Levels for Artificial Intelligence," JRC Research Reports JRC122014, Joint Research Centre.
    19. Yu Wang & Chao Pang & Yuzhe Wang & Junru Jin & Jingjie Zhang & Xiangxiang Zeng & Ran Su & Quan Zou & Leyi Wei, 2023. "Retrosynthesis prediction with an interpretable deep-learning framework based on molecular assembly tasks," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Weihe Zhong & Ziduo Yang & Calvin Yu-Chian Chen, 2023. "Retrosynthesis prediction using an end-to-end graph generative architecture for molecular graph editing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42870-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.