IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39506-1.html
   My bibliography  Save this article

Hedgehog signaling via its ligand DHH acts as cell fate determinant during skeletal muscle regeneration

Author

Listed:
  • Alessandra M. Norris

    (University of Florida)

  • Ambili Bai Appu

    (University of Florida)

  • Connor D. Johnson

    (University of Florida)

  • Lylybell Y. Zhou

    (University of Florida)

  • David W. McKellar

    (Cornell University)

  • Marie-Ange Renault

    (University of Bordeaux)

  • David Hammers

    (University of Florida)

  • Benjamin D. Cosgrove

    (Cornell University)

  • Daniel Kopinke

    (University of Florida)

Abstract

Successful muscle regeneration relies on the interplay of multiple cell populations. However, the signals required for this coordinated intercellular crosstalk remain largely unknown. Here, we describe how the Hedgehog (Hh) signaling pathway controls the fate of fibro/adipogenic progenitors (FAPs), the cellular origin of intramuscular fat (IMAT) and fibrotic scar tissue. Using conditional mutagenesis and pharmacological Hh modulators in vivo and in vitro, we identify DHH as the key ligand that acts as a potent adipogenic brake by preventing the adipogenic differentiation of FAPs. Hh signaling also impacts muscle regeneration, albeit indirectly through induction of myogenic factors in FAPs. Our results also indicate that ectopic and sustained Hh activation forces FAPs to adopt a fibrogenic fate resulting in widespread fibrosis. In this work, we reveal crucial post-developmental functions of Hh signaling in balancing tissue regeneration and fatty fibrosis. Moreover, they provide the exciting possibility that mis-regulation of the Hh pathway with age and disease could be a major driver of pathological IMAT formation.

Suggested Citation

  • Alessandra M. Norris & Ambili Bai Appu & Connor D. Johnson & Lylybell Y. Zhou & David W. McKellar & Marie-Ange Renault & David Hammers & Benjamin D. Cosgrove & Daniel Kopinke, 2023. "Hedgehog signaling via its ligand DHH acts as cell fate determinant during skeletal muscle regeneration," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39506-1
    DOI: 10.1038/s41467-023-39506-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39506-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39506-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Caroline E. Brun & Marie-Claude Sincennes & Alexander Y. T. Lin & Derek Hall & William Jarassier & Peter Feige & Fabien Le Grand & Michael A. Rudnicki, 2022. "GLI3 regulates muscle stem cell entry into GAlert and self-renewal," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Adelaida R. Palla & Keren I. Hilgendorf & Ann V. Yang & Jaclyn P. Kerr & Aaron C. Hinken & Janos Demeter & Peggy Kraft & Nancie A. Mooney & Nora Yucel & David M. Burns & Yu Xin Wang & Peter K. Jackson, 2022. "Primary cilia on muscle stem cells are critical to maintain regenerative capacity and are lost during aging," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Marshall W. Hogarth & Aurelia Defour & Christopher Lazarski & Eduard Gallardo & Jordi Diaz Manera & Terence A. Partridge & Kanneboyina Nagaraju & Jyoti K. Jaiswal, 2019. "Fibroadipogenic progenitors are responsible for muscle loss in limb girdle muscular dystrophy 2B," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiayin Peng & Lili Han & Biao Liu & Jiawen Song & Yuang Wang & Kunpeng Wang & Qian Guo & XinYan Liu & Yu Li & Jujin Zhang & Wenqing Wu & Sheng Li & Xin Fu & Cheng-le Zhuang & Weikang Zhang & Shengbao , 2023. "Gli1 marks a sentinel muscle stem cell population for muscle regeneration," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiayin Peng & Lili Han & Biao Liu & Jiawen Song & Yuang Wang & Kunpeng Wang & Qian Guo & XinYan Liu & Yu Li & Jujin Zhang & Wenqing Wu & Sheng Li & Xin Fu & Cheng-le Zhuang & Weikang Zhang & Shengbao , 2023. "Gli1 marks a sentinel muscle stem cell population for muscle regeneration," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39506-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.