IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42779-1.html
   My bibliography  Save this article

Emergent superconductivity in topological-kagome-magnet/metal heterostructures

Author

Listed:
  • He Wang

    (Peking University
    Capital Normal University)

  • Yanzhao Liu

    (Peking University)

  • Ming Gong

    (Peking University)

  • Hua Jiang

    (Soochow University)

  • Xiaoyue Gao

    (Peking University)

  • Wenlong Ma

    (Peking University)

  • Jiawei Luo

    (Peking University)

  • Haoran Ji

    (Peking University)

  • Jun Ge

    (Peking University)

  • Shuang Jia

    (Peking University)

  • Peng Gao

    (Peking University)

  • Ziqiang Wang

    (Boston College)

  • X. C. Xie

    (Peking University
    Hefei National Laboratory
    Fudan University)

  • Jian Wang

    (Peking University
    Hefei National Laboratory
    Collaborative Innovation Center of Quantum Matter)

Abstract

Itinerant kagome lattice magnets exhibit many novel correlated and topological quantum electronic states with broken time-reversal symmetry. Superconductivity, however, has not been observed in this class of materials, presenting a roadblock in a promising path toward topological superconductivity. Here, we report that novel superconductivity can emerge at the interface of kagome Chern magnet TbMn6Sn6 and metal heterostructures when elemental metallic thin films are deposited on either the top (001) surface or the side surfaces. Superconductivity is also successfully induced and systematically studied by using various types of metallic tips on different TbMn6Sn6 surfaces in point-contact measurements. The anisotropy of the superconducting upper critical field suggests that the emergent superconductivity is quasi-two-dimensional. Remarkably, the interface superconductor couples to the magnetic order of the kagome metal and exhibits a hysteretic magnetoresistance in the superconducting states. Taking into account the spin-orbit coupling, the observed interface superconductivity can be a surprising and more realistic realization of the p-wave topological superconductors theoretically proposed for two-dimensional semiconductors proximity-coupled to s-wave superconductors and insulating ferromagnets. Our findings of robust superconductivity in topological-Chern-magnet/metal heterostructures offer a new direction for investigating spin-triplet pairing and topological superconductivity.

Suggested Citation

  • He Wang & Yanzhao Liu & Ming Gong & Hua Jiang & Xiaoyue Gao & Wenlong Ma & Jiawei Luo & Haoran Ji & Jun Ge & Shuang Jia & Peng Gao & Ziqiang Wang & X. C. Xie & Jian Wang, 2023. "Emergent superconductivity in topological-kagome-magnet/metal heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42779-1
    DOI: 10.1038/s41467-023-42779-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42779-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42779-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dai Aoki & Andrew Huxley & Eric Ressouche & Daniel Braithwaite & Jacques Flouquet & Jean-Pascal Brison & Elsa Lhotel & Carley Paulsen, 2001. "Coexistence of superconductivity and ferromagnetism in URhGe," Nature, Nature, vol. 413(6856), pages 613-616, October.
    2. Yuan Cao & Valla Fatemi & Shiang Fang & Kenji Watanabe & Takashi Taniguchi & Efthimios Kaxiras & Pablo Jarillo-Herrero, 2018. "Unconventional superconductivity in magic-angle graphene superlattices," Nature, Nature, vol. 556(7699), pages 43-50, April.
    3. A. Gozar & G. Logvenov & L. Fitting Kourkoutis & A. T. Bollinger & L. A. Giannuzzi & D. A. Muller & I. Bozovic, 2008. "High-temperature interface superconductivity between metallic and insulating copper oxides," Nature, Nature, vol. 455(7214), pages 782-785, October.
    4. Jia-Xin Yin & Wenlong Ma & Tyler A. Cochran & Xitong Xu & Songtian S. Zhang & Hung-Ju Tien & Nana Shumiya & Guangming Cheng & Kun Jiang & Biao Lian & Zhida Song & Guoqing Chang & Ilya Belopolski & Dan, 2020. "Quantum-limit Chern topological magnetism in TbMn6Sn6," Nature, Nature, vol. 583(7817), pages 533-536, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Y. Shen & C. Y. Shi & Z. M. Pan & L. L. Ju & M. D. Dong & G. F. Chen & Y. C. Zhang & J. K. Yuan & C. J. Wu & Y. W. Xie & J. Wu, 2023. "Reentrance of interface superconductivity in a high-Tc cuprate heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. J. Díez-Mérida & A. Díez-Carlón & S. Y. Yang & Y.-M. Xie & X.-J. Gao & J. Senior & K. Watanabe & T. Taniguchi & X. Lu & A. P. Higginbotham & K. T. Law & Dmitri K. Efetov, 2023. "Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Yuhao Ye & Jinhua Wang & Pan Nie & Huakun Zuo & Xiaokang Li & Kamran Behnia & Zengwei Zhu & Benoît Fauqué, 2024. "Tuning the BCS-BEC crossover of electron-hole pairing with pressure," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Li Chen & Cong Lin & Diwei Shi & Xuanyu Huang & Quanshui Zheng & Jinhui Nie & Ming Ma, 2023. "Fully automatic transfer and measurement system for structural superlubric materials," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Xinyu Wang & Jinghua Jiang & Juan Chen & Zhawure Asilehan & Wentao Tang & Chenhui Peng & Rui Zhang, 2024. "Moiré effect enables versatile design of topological defects in nematic liquid crystals," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Alejandro Ruiz & Brandon Gunn & Yi Lu & Kalyan Sasmal & Camilla M. Moir & Rourav Basak & Hai Huang & Jun-Sik Lee & Fanny Rodolakis & Timothy J. Boyle & Morgan Walker & Yu He & Santiago Blanco-Canosa &, 2022. "Stabilization of three-dimensional charge order through interplanar orbital hybridization in PrxY1−xBa2Cu3O6+δ," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Sami Dzsaber & Diego A. Zocco & Alix McCollam & Franziska Weickert & Ross McDonald & Mathieu Taupin & Gaku Eguchi & Xinlin Yan & Andrey Prokofiev & Lucas M. K. Tang & Bryan Vlaar & Laurel E. Winter & , 2022. "Control of electronic topology in a strongly correlated electron system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Sahar Pakdel & Asbjørn Rasmussen & Alireza Taghizadeh & Mads Kruse & Thomas Olsen & Kristian S. Thygesen, 2024. "High-throughput computational stacking reveals emergent properties in natural van der Waals bilayers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Kaijie Yang & Zian Xu & Yanjie Feng & Frank Schindler & Yuanfeng Xu & Zhen Bi & B. Andrei Bernevig & Peizhe Tang & Chao-Xing Liu, 2024. "Topological minibands and interaction driven quantum anomalous Hall state in topological insulator based moiré heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Keshav Singh & Aaron Chew & Jonah Herzog-Arbeitman & B. Andrei Bernevig & Oskar Vafek, 2024. "Topological heavy fermions in magnetic field," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Peng Wang & Qidong Fu & Ruihan Peng & Yaroslav V. Kartashov & Lluis Torner & Vladimir V. Konotop & Fangwei Ye, 2022. "Two-dimensional Thouless pumping of light in photonic moiré lattices," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Avior Almoalem & Irena Feldman & Ilay Mangel & Michael Shlafman & Yuval E. Yaish & Mark H. Fischer & Michael Moshe & Jonathan Ruhman & Amit Kanigel, 2024. "The observation of π-shifts in the Little-Parks effect in 4Hb-TaS2," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Märta A. Tschudin & David A. Broadway & Patrick Siegwolf & Carolin Schrader & Evan J. Telford & Boris Gross & Jordan Cox & Adrien E. E. Dubois & Daniel G. Chica & Ricardo Rama-Eiroa & Elton J. G. Sant, 2024. "Imaging nanomagnetism and magnetic phase transitions in atomically thin CrSBr," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Yuri Saida & Thomas Gauthier & Hiroo Suzuki & Satoshi Ohmura & Ryo Shikata & Yui Iwasaki & Godai Noyama & Misaki Kishibuchi & Yuichiro Tanaka & Wataru Yajima & Nicolas Godin & Gaël Privault & Tomoharu, 2024. "Photoinduced dynamics during electronic transfer from narrow to wide bandgap layers in one-dimensional heterostructured materials," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Anushree Datta & M. J. Calderón & A. Camjayi & E. Bascones, 2023. "Heavy quasiparticles and cascades without symmetry breaking in twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Xiaozhou Zan & Xiangdong Guo & Aolin Deng & Zhiheng Huang & Le Liu & Fanfan Wu & Yalong Yuan & Jiaojiao Zhao & Yalin Peng & Lu Li & Yangkun Zhang & Xiuzhen Li & Jundong Zhu & Jingwei Dong & Dongxia Sh, 2024. "Electron/infrared-phonon coupling in ABC trilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    17. Haoyu Qin & Shaohu Chen & Weixuan Zhang & Huizhen Zhang & Ruhao Pan & Junjie Li & Lei Shi & Jian Zi & Xiangdong Zhang, 2024. "Optical moiré bound states in the continuum," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Suk Hyun Sung & Yin Min Goh & Hyobin Yoo & Rebecca Engelke & Hongchao Xie & Kuan Zhang & Zidong Li & Andrew Ye & Parag B. Deotare & Ellad B. Tadmor & Andrew J. Mannix & Jiwoong Park & Liuyan Zhao & Ph, 2022. "Torsional periodic lattice distortions and diffraction of twisted 2D materials," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    19. Robin Huber & Max-Niklas Steffen & Martin Drienovsky & Andreas Sandner & Kenji Watanabe & Takashi Taniguchi & Daniela Pfannkuche & Dieter Weiss & Jonathan Eroms, 2022. "Band conductivity oscillations in a gate-tunable graphene superlattice," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    20. Shouheng Chen & Zihan Liang & Jinshui Miao & Xiang-Long Yu & Shuo Wang & Yule Zhang & Han Wang & Yun Wang & Chun Cheng & Gen Long & Taihong Wang & Lin Wang & Han Zhang & Xiaolong Chen, 2024. "Infrared optoelectronics in twisted black phosphorus," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42779-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.