IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42279-2.html
   My bibliography  Save this article

Mesophotic coral bleaching associated with changes in thermocline depth

Author

Listed:
  • Clara Diaz

    (University of Plymouth, Drake Circus)

  • Nicola L. Foster

    (University of Plymouth, Drake Circus)

  • Martin J. Attrill

    (University of Plymouth, Drake Circus)

  • Adam Bolton

    (University of Plymouth, Drake Circus)

  • Peter Ganderton

    (University of Plymouth, Drake Circus)

  • Kerry L. Howell

    (University of Plymouth, Drake Circus)

  • Edward Robinson

    (University of Plymouth, Drake Circus)

  • Phil Hosegood

    (University of Plymouth, Drake Circus)

Abstract

As global temperatures continue to rise, shallow coral reef bleaching has become more intense and widespread. Mesophotic coral ecosystems reside in deeper (30–150 m), cooler water and were thought to offer a refuge to shallow-water reefs. Studies now show that mesophotic coral ecosystems instead have limited connectivity with shallow corals but host diverse endemic communities. Given their extensive distribution and high biodiversity, understanding their susceptibility to warming oceans is imperative. In this multidisciplinary study of an atoll in the Chagos Archipelago in the central Indian Ocean, we show evidence of coral bleaching at 90 m, despite the absence of shallow-water bleaching. We also show that the bleaching was associated with sustained thermocline deepening driven by the Indian Ocean Dipole, which might be further enhanced by internal waves whose influence varied at a sub-atoll scale. Our results demonstrate the potential vulnerability of mesophotic coral ecosystems to thermal stress and highlight the need for oceanographic knowledge to predict bleaching susceptibility and heterogeneity.

Suggested Citation

  • Clara Diaz & Nicola L. Foster & Martin J. Attrill & Adam Bolton & Peter Ganderton & Kerry L. Howell & Edward Robinson & Phil Hosegood, 2023. "Mesophotic coral bleaching associated with changes in thermocline depth," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42279-2
    DOI: 10.1038/s41467-023-42279-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42279-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42279-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wenju Cai & Agus Santoso & Guojian Wang & Evan Weller & Lixin Wu & Karumuri Ashok & Yukio Masumoto & Toshio Yamagata, 2014. "Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming," Nature, Nature, vol. 510(7504), pages 254-258, June.
    2. Pedro R. Frade & Pim Bongaerts & Norbert Englebert & Alice Rogers & Manuel Gonzalez-Rivero & Ove Hoegh-Guldberg, 2018. "Deep reefs of the Great Barrier Reef offer limited thermal refuge during mass coral bleaching," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    3. Tom C. L. Bridge & Terry P. Hughes & John M. Guinotte & Pim Bongaerts, 2013. "Call to protect all coral reefs," Nature Climate Change, Nature, vol. 3(6), pages 528-530, June.
    4. Tiffany H. Morrison & Terry P. Hughes & W. Neil Adger & Katrina Brown & Jon Barnett & Maria Carmen Lemos, 2019. "Save reefs to rescue all ecosystems," Nature, Nature, vol. 573(7774), pages 333-336, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenju Cai & Yi Liu & Xiaopei Lin & Ziguang Li & Ying Zhang & David Newth, 2024. "Nonlinear country-heterogenous impact of the Indian Ocean Dipole on global economies," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Weiqing Han & Lei Zhang & Gerald A. Meehl & Shoichiro Kido & Tomoki Tozuka & Yuanlong Li & Michael J. McPhaden & Aixue Hu & Anny Cazenave & Nan Rosenbloom & Gary Strand & B. Jason West & Wen Xing, 2022. "Sea level extremes and compounding marine heatwaves in coastal Indonesia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Damette, Olivier & Mathonnat, Clément & Thavard, Julien, 2024. "Climate and sovereign risk: The Latin American experience with strong ENSO events," World Development, Elsevier, vol. 178(C).
    4. Hosmay Lopez & Sang-Ki Lee & Dongmin Kim & Andrew T. Wittenberg & Sang-Wook Yeh, 2022. "Projections of faster onset and slower decay of El Niño in the 21st century," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Hamman, Evan & Brodie, Jon & Eberhard, Rachel & Deane, Felicity & Bode, Michael, 2022. "Regulating land use in the catchment of the Great Barrier Reef," Land Use Policy, Elsevier, vol. 115(C).
    6. Aguilar, Arturo & Vicarelli, Marta, 2022. "El Niño and children: Medium-term effects of early-life weather shocks on cognitive and health outcomes," World Development, Elsevier, vol. 150(C).
    7. Tao Geng & Wenju Cai & Lixin Wu & Agus Santoso & Guojian Wang & Zhao Jing & Bolan Gan & Yun Yang & Shujun Li & Shengpeng Wang & Zhaohui Chen & Michael J. McPhaden, 2022. "Emergence of changing Central-Pacific and Eastern-Pacific El Niño-Southern Oscillation in a warming climate," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Zi Yin & Qing Dong & Kunsheng Xiang & Min Bian, 2022. "Spatio-Temporal Characteristics of the Indo-Pacific Warm Pool and the Corresponding Rain Pool," Sustainability, MDPI, vol. 14(17), pages 1-20, August.
    9. Omid Alizadeh, 2022. "Amplitude, duration, variability, and seasonal frequency analysis of the El Niño-Southern Oscillation," Climatic Change, Springer, vol. 174(3), pages 1-15, October.
    10. Tai Chong Toh & Chin Soon Lionel Ng & Jia Wei Kassler Peh & Kok Ben Toh & Loke Ming Chou, 2014. "Augmenting the Post-Transplantation Growth and Survivorship of Juvenile Scleractinian Corals via Nutritional Enhancement," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
    11. Kawika B. Winter & Kamanamaikalani Beamer & Mehana Blaich Vaughan & Alan M. Friedlander & Mike H. Kido & A. Nāmaka Whitehead & Malia K.H. Akutagawa & Natalie Kurashima & Matthew Paul Lucas & Ben Nyber, 2018. "The Moku System: Managing Biocultural Resources for Abundance within Social-Ecological Regions in Hawaiʻi," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
    12. Joshua B. Horton & Penehuro Lefale & David Keith, 2021. "Parametric Insurance for Solar Geoengineering: Insights from the Pacific Catastrophe Risk Assessment and Financing Initiative," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 97-107, April.
    13. Jade M S Delevaux & Robert Whittier & Kostantinos A Stamoulis & Leah L Bremer & Stacy Jupiter & Alan M Friedlander & Matthew Poti & Greg Guannel & Natalie Kurashima & Kawika B Winter & Robert Toonen &, 2018. "A linked land-sea modeling framework to inform ridge-to-reef management in high oceanic islands," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-37, March.
    14. Melea Press, 2021. "Developing a strong sustainability research program in marketing," AMS Review, Springer;Academy of Marketing Science, vol. 11(1), pages 96-114, June.
    15. Michele Ronco & José María Tárraga & Jordi Muñoz & María Piles & Eva Sevillano Marco & Qiang Wang & Maria Teresa Miranda Espinosa & Sylvain Ponserre & Gustau Camps-Valls, 2023. "Exploring interactions between socioeconomic context and natural hazards on human population displacement," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Ana N. Campoy & Marcelo M. Rivadeneira & Cristián E. Hernández & Andrew Meade & Chris Venditti, 2023. "Deep-sea origin and depth colonization associated with phenotypic innovations in scleractinian corals," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Jeong-Bae Kim & Jean de Dieu Habimana & Seon-Ho Kim & Deg-Hyo Bae, 2021. "Assessment of Climate Change Impacts on the Hydroclimatic Response in Burundi Based on CMIP6 ESMs," Sustainability, MDPI, vol. 13(21), pages 1-21, October.
    18. Soong-Ki Kim & Hyo-Jin Park & Soon-Il An & Chao Liu & Wenju Cai & Agus Santoso & Jong-Seong Kug, 2024. "Decreased Indian Ocean Dipole variability under prolonged greenhouse warming," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Glyn Wittwer & Robert Waschik, 2021. "Estimating the economic impacts of the 2017–2019 drought and 2019–2020 bushfires on regional NSW and the rest of Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(4), pages 918-936, October.
    20. Davis, Katrina J, 2022. "Managed culls mean extinction for a marine mammal population when combined with extreme climate impacts," Ecological Modelling, Elsevier, vol. 473(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42279-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.