IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50573-w.html
   My bibliography  Save this article

Exploring the roles of RNAs in chromatin architecture using deep learning

Author

Listed:
  • Shuzhen Kuang

    (Gladstone Institute of Data Science and Biotechnology)

  • Katherine S. Pollard

    (Gladstone Institute of Data Science and Biotechnology
    University of California
    Chan Zuckerberg Biohub)

Abstract

Recent studies have highlighted the impact of both transcription and transcripts on 3D genome organization, particularly its dynamics. Here, we propose a deep learning framework, called AkitaR, that leverages both genome sequences and genome-wide RNA-DNA interactions to investigate the roles of chromatin-associated RNAs (caRNAs) on genome folding in HFFc6 cells. In order to disentangle the cis- and trans-regulatory roles of caRNAs, we have compared models with nascent transcripts, trans-located caRNAs, open chromatin data, or DNA sequence alone. Both nascent transcripts and trans-located caRNAs improve the models’ predictions, especially at cell-type-specific genomic regions. Analyses of feature importance scores reveal the contribution of caRNAs at TAD boundaries, chromatin loops and nuclear sub-structures such as nuclear speckles and nucleoli to the models’ predictions. Furthermore, we identify non-coding RNAs (ncRNAs) known to regulate chromatin structures, such as MALAT1 and NEAT1, as well as several new RNAs, RNY5, RPPH1, POLG-DT and THBS1-IT1, that might modulate chromatin architecture through trans-interactions in HFFc6. Our modeling also suggests that transcripts from Alus and other repetitive elements may facilitate chromatin interactions through trans R-loop formation. Our findings provide insights and generate testable hypotheses about the roles of caRNAs in shaping chromatin organization.

Suggested Citation

  • Shuzhen Kuang & Katherine S. Pollard, 2024. "Exploring the roles of RNAs in chromatin architecture using deep learning," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50573-w
    DOI: 10.1038/s41467-024-50573-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50573-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50573-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sarah B. Reiff & Andrew J. Schroeder & Koray Kırlı & Andrea Cosolo & Clara Bakker & Luisa Mercado & Soohyun Lee & Alexander D. Veit & Alexander K. Balashov & Carl Vitzthum & William Ronchetti & Kent M, 2022. "Author Correction: The 4D Nucleome Data Portal as a resource for searching and visualizing curated nucleomics data," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    2. Liang Liang & Changchang Cao & Lei Ji & Zhaokui Cai & Di Wang & Rong Ye & Juan Chen & Xiaohua Yu & Jie Zhou & Zhibo Bai & Ruoyan Wang & Xianguang Yang & Ping Zhu & Yuanchao Xue, 2023. "Complementary Alu sequences mediate enhancer–promoter selectivity," Nature, Nature, vol. 619(7971), pages 868-875, July.
    3. Sarah B. Reiff & Andrew J. Schroeder & Koray Kırlı & Andrea Cosolo & Clara Bakker & Luisa Mercado & Soohyun Lee & Alexander D. Veit & Alexander K. Balashov & Carl Vitzthum & William Ronchetti & Kent M, 2022. "The 4D Nucleome Data Portal as a resource for searching and visualizing curated nucleomics data," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Swneke D. Bailey & Xiaoyang Zhang & Kinjal Desai & Malika Aid & Olivia Corradin & Richard Cowper-Sal·lari & Batool Akhtar-Zaidi & Peter C. Scacheri & Benjamin Haibe-Kains & Mathieu Lupien, 2015. "ZNF143 provides sequence specificity to secure chromatin interactions at gene promoters," Nature Communications, Nature, vol. 6(1), pages 1-10, May.
    5. Riccardo Calandrelli & Xingzhao Wen & John Lalith Charles Richard & Zhifei Luo & Tri C. Nguyen & Chien-Ju Chen & Zhijie Qi & Shuanghong Xue & Weizhong Chen & Zhangming Yan & Weixin Wu & Kathia Zaleta-, 2023. "Genome-wide analysis of the interplay between chromatin-associated RNA and 3D genome organization in human cells," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Jiong Li & Bo Yu & Peng Deng & Yingduan Cheng & Yongxin Yu & Kareena Kevork & Sivakumar Ramadoss & Xiangming Ding & Xinmin Li & Cun-Yu Wang, 2017. "KDM3 epigenetically controls tumorigenic potentials of human colorectal cancer stem cells through Wnt/β-catenin signalling," Nature Communications, Nature, vol. 8(1), pages 1-15, April.
    7. Cyrille Girard & Cindy L. Will & Jianhe Peng & Evgeny M. Makarov & Berthold Kastner & Ira Lemm & Henning Urlaub & Klaus Hartmuth & Reinhard Lührmann, 2012. "Post-transcriptional spliceosomes are retained in nuclear speckles until splicing completion," Nature Communications, Nature, vol. 3(1), pages 1-12, January.
    8. Liang Liang & Changchang Cao & Lei Ji & Zhaokui Cai & Di Wang & Rong Ye & Juan Chen & Xiaohua Yu & Jie Zhou & Zhibo Bai & Ruoyan Wang & Xianguang Yang & Ping Zhu & Yuanchao Xue, 2023. "Publisher Correction: Complementary Alu sequences mediate enhancer–promoter selectivity," Nature, Nature, vol. 620(7975), pages 26-26, August.
    9. Emily Crane & Qian Bian & Rachel Patton McCord & Bryan R. Lajoie & Bayly S. Wheeler & Edward J. Ralston & Satoru Uzawa & Job Dekker & Barbara J. Meyer, 2015. "Condensin-driven remodelling of X chromosome topology during dosage compensation," Nature, Nature, vol. 523(7559), pages 240-244, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacques Serizay & Cyril Matthey-Doret & Amaury Bignaud & Lyam Baudry & Romain Koszul, 2024. "Orchestrating chromosome conformation capture analysis with Bioconductor," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Dan Daniel Erdmann-Pham & Sanjit Singh Batra & Timothy K. Turkalo & James Durbin & Marco Blanchette & Iwei Yeh & Hunter Shain & Boris C. Bastian & Yun S. Song & Daniel S. Rokhsar & Dirk Hockemeyer, 2023. "Tracing cancer evolution and heterogeneity using Hi-C," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Riccardo Calandrelli & Xingzhao Wen & John Lalith Charles Richard & Zhifei Luo & Tri C. Nguyen & Chien-Ju Chen & Zhijie Qi & Shuanghong Xue & Weizhong Chen & Zhangming Yan & Weixin Wu & Kathia Zaleta-, 2023. "Genome-wide analysis of the interplay between chromatin-associated RNA and 3D genome organization in human cells," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Tengfei Wang & Shuxiang Shi & Yuanyuan Shi & Peipei Jiang & Ganlu Hu & Qinying Ye & Zhan Shi & Kexin Yu & Chenguang Wang & Guoping Fan & Suwen Zhao & Hanhui Ma & Alex C. Y. Chang & Zhi Li & Qian Bian , 2023. "Chemical-induced phase transition and global conformational reorganization of chromatin," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Anastasiia Lozovska & Artemis G. Korovesi & André Dias & Alexandre Lopes & Donald A. Fowler & Gabriel G. Martins & Ana Nóvoa & Moisés Mallo, 2024. "Tgfbr1 controls developmental plasticity between the hindlimb and external genitalia by remodeling their regulatory landscape," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Thais Ealo & Victor Sanchez-Gaya & Patricia Respuela & María Muñoz-San Martín & Elva Martin-Batista & Endika Haro & Alvaro Rada-Iglesias, 2024. "Cooperative insulation of regulatory domains by CTCF-dependent physical insulation and promoter competition," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    7. Zhen-Hui Wang & Xin-Feng Wang & Tianyuan Lu & Ming-Rui Li & Peng Jiang & Jing Zhao & Si-Tong Liu & Xue-Qi Fu & Jonathan F. Wendel & Yves Peer & Bao Liu & Lin-Feng Li, 2022. "Reshuffling of the ancestral core-eudicot genome shaped chromatin topology and epigenetic modification in Panax," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Chong Wang & Xiang Liu & Jun Liang & Yohei Narita & Weiyue Ding & Difei Li & Luyao Zhang & Hongbo Wang & Merrin Man Long Leong & Isabella Hou & Catherine Gerdt & Chang Jiang & Qian Zhong & Zhonghui Ta, 2023. "A DNA tumor virus globally reprograms host 3D genome architecture to achieve immortal growth," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Zhaowei Chu & Lei Gu & Yeguang Hu & Xiaoyang Zhang & Man Li & Jiajia Chen & Da Teng & Man Huang & Che-Hung Shen & Li Cai & Toshimi Yoshida & Yifeng Qi & Zhixin Niu & Austin Feng & Songmei Geng & Denni, 2022. "STAG2 regulates interferon signaling in melanoma via enhancer loop reprogramming," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Jie Zhao & Meng Zhang & Wenyan Hui & Yue Zhang & Jing Wang & Shaojing Wang & Lai-Yu Kwok & Jian Kong & Heping Zhang & Wenyi Zhang, 2023. "Roles of adenine methylation in the physiology of Lacticaseibacillus paracasei," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Brent S. Perlman & Noah Burget & Yeqiao Zhou & Gregory W. Schwartz & Jelena Petrovic & Zora Modrusan & Robert B. Faryabi, 2024. "Enhancer-promoter hubs organize transcriptional networks promoting oncogenesis and drug resistance," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    12. Ryuichiro Nakato & Toyonori Sakata & Jiankang Wang & Luis Augusto Eijy Nagai & Yuya Nagaoka & Gina Miku Oba & Masashige Bando & Katsuhiko Shirahige, 2023. "Context-dependent perturbations in chromatin folding and the transcriptome by cohesin and related factors," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Koon-Kiu Yan & Shaoke Lou & Mark Gerstein, 2017. "MrTADFinder: A network modularity based approach to identify topologically associating domains in multiple resolutions," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-22, July.
    14. Hye Ji Cha & Özgün Uyan & Yan Kai & Tianxin Liu & Qian Zhu & Zuzana Tothova & Giovanni A. Botten & Jian Xu & Guo-Cheng Yuan & Job Dekker & Stuart H. Orkin, 2021. "Inner nuclear protein Matrin-3 coordinates cell differentiation by stabilizing chromatin architecture," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    15. Wu Zuo & Guangming Chen & Zhimei Gao & Shuai Li & Yanyan Chen & Chenhui Huang & Juan Chen & Zhengjun Chen & Ming Lei & Qian Bian, 2021. "Stage-resolved Hi-C analyses reveal meiotic chromosome organizational features influencing homolog alignment," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    16. Mario Ivanković & Jeremias N. Brand & Luca Pandolfini & Thomas Brown & Martin Pippel & Andrei Rozanski & Til Schubert & Markus A. Grohme & Sylke Winkler & Laura Robledillo & Meng Zhang & Azzurra Codin, 2024. "A comparative analysis of planarian genomes reveals regulatory conservation in the face of rapid structural divergence," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    17. Li-Hsin Chang & Sourav Ghosh & Andrea Papale & Jennifer M. Luppino & Mélanie Miranda & Vincent Piras & Jéril Degrouard & Joanne Edouard & Mallory Poncelet & Nathan Lecouvreur & Sébastien Bloyer & Amél, 2023. "Multi-feature clustering of CTCF binding creates robustness for loop extrusion blocking and Topologically Associating Domain boundaries," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    18. Robert Atkinson & Maria Georgiou & Chunbo Yang & Katarzyna Szymanska & Albert Lahat & Elton J. R. Vasconcelos & Yanlong Ji & Marina Moya Molina & Joseph Collin & Rachel Queen & Birthe Dorgau & Avril W, 2024. "PRPF8-mediated dysregulation of hBrr2 helicase disrupts human spliceosome kinetics and 5´-splice-site selection causing tissue-specific defects," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    19. Botong Zhou & Ping Hu & Guichun Liu & Zhou Chang & Zhiwei Dong & Zihe Li & Yuan Yin & Zunzhe Tian & Ge Han & Wen Wang & Xueyan Li, 2024. "Evolutionary patterns and functional effects of 3D chromatin structures in butterflies with extensive genome rearrangements," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    20. Mingsen Li & Huaxing Huang & Bofeng Wang & Shaoshuai Jiang & Huizhen Guo & Liqiong Zhu & Siqi Wu & Jiafeng Liu & Li Wang & Xihong Lan & Wang Zhang & Jin Zhu & Fuxi Li & Jieying Tan & Zhen Mao & Chunqi, 2022. "Comprehensive 3D epigenomic maps define limbal stem/progenitor cell function and identity," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50573-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.