IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43841-8.html
   My bibliography  Save this article

TAD evolutionary and functional characterization reveals diversity in mammalian TAD boundary properties and function

Author

Listed:
  • Mariam Okhovat

    (Oregon Health and Science University)

  • Jake VanCampen

    (Oregon Health and Science University)

  • Kimberly A. Nevonen

    (Oregon Health and Science University)

  • Lana Harshman

    (University of California San Francisco
    University of California San Francisco)

  • Weiyu Li

    (University of California San Francisco
    University of California San Francisco)

  • Cora E. Layman

    (Oregon Health and Science University)

  • Samantha Ward

    (Oregon Health and Science University)

  • Jarod Herrera

    (Oregon Health and Science University)

  • Jackson Wells

    (Oregon Health and Science University)

  • Rory R. Sheng

    (University of California San Francisco
    University of California San Francisco)

  • Yafei Mao

    (University of Washington School of Medicine
    Shanghai Jiao Tong University)

  • Blaise Ndjamen

    (Histology and Light Microscopy Core Facility, Gladstone Institutes)

  • Ana C. Lima

    (Division of Genetics, Oregon National Primate Research Center)

  • Katinka A. Vigh-Conrad

    (Division of Genetics, Oregon National Primate Research Center)

  • Alexandra M. Stendahl

    (Division of Genetics, Oregon National Primate Research Center)

  • Ran Yang

    (Division of Genetics, Oregon National Primate Research Center)

  • Lev Fedorov

    (Oregon Health and Science University)

  • Ian R. Matthews

    (University of California)

  • Sarah A. Easow

    (University of California)

  • Dylan K. Chan

    (University of California)

  • Taha A. Jan

    (Vanderbilt University Medical Center)

  • Evan E. Eichler

    (University of Washington School of Medicine
    University of Washington)

  • Sandra Rugonyi

    (Oregon Health and Science University)

  • Donald F. Conrad

    (Division of Genetics, Oregon National Primate Research Center
    Oregon Health and Science University)

  • Nadav Ahituv

    (University of California San Francisco
    University of California San Francisco)

  • Lucia Carbone

    (Oregon Health and Science University
    Division of Genetics, Oregon National Primate Research Center
    Oregon Health and Science University
    Oregon Health and Science University)

Abstract

Topological associating domains (TADs) are self-interacting genomic units crucial for shaping gene regulation patterns. Despite their importance, the extent of their evolutionary conservation and its functional implications remain largely unknown. In this study, we generate Hi-C and ChIP-seq data and compare TAD organization across four primate and four rodent species and characterize the genetic and epigenetic properties of TAD boundaries in correspondence to their evolutionary conservation. We find 14% of all human TAD boundaries to be shared among all eight species (ultraconserved), while 15% are human-specific. Ultraconserved TAD boundaries have stronger insulation strength, CTCF binding, and enrichment of older retrotransposons compared to species-specific boundaries. CRISPR-Cas9 knockouts of an ultraconserved boundary in a mouse model lead to tissue-specific gene expression changes and morphological phenotypes. Deletion of a human-specific boundary near the autism-related AUTS2 gene results in the upregulation of this gene in neurons. Overall, our study provides pertinent TAD boundary evolutionary conservation annotations and showcases the functional importance of TAD evolution.

Suggested Citation

  • Mariam Okhovat & Jake VanCampen & Kimberly A. Nevonen & Lana Harshman & Weiyu Li & Cora E. Layman & Samantha Ward & Jarod Herrera & Jackson Wells & Rory R. Sheng & Yafei Mao & Blaise Ndjamen & Ana C. , 2023. "TAD evolutionary and functional characterization reveals diversity in mammalian TAD boundary properties and function," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43841-8
    DOI: 10.1038/s41467-023-43841-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43841-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43841-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jesse R. Dixon & Siddarth Selvaraj & Feng Yue & Audrey Kim & Yan Li & Yin Shen & Ming Hu & Jun S. Liu & Bing Ren, 2012. "Topological domains in mammalian genomes identified by analysis of chromatin interactions," Nature, Nature, vol. 485(7398), pages 376-380, May.
    2. Lucia Carbone & R. Alan Harris & Sante Gnerre & Krishna R. Veeramah & Belen Lorente-Galdos & John Huddleston & Thomas J. Meyer & Javier Herrero & Christian Roos & Bronwen Aken & Fabio Anaclerio & Nico, 2014. "Gibbon genome and the fast karyotype evolution of small apes," Nature, Nature, vol. 513(7517), pages 195-201, September.
    3. Elphège P. Nora & Bryan R. Lajoie & Edda G. Schulz & Luca Giorgetti & Ikuhiro Okamoto & Nicolas Servant & Tristan Piolot & Nynke L. van Berkum & Johannes Meisig & John Sedat & Joost Gribnau & Emmanuel, 2012. "Spatial partitioning of the regulatory landscape of the X-inactivation centre," Nature, Nature, vol. 485(7398), pages 381-385, May.
    4. Emily Crane & Qian Bian & Rachel Patton McCord & Bryan R. Lajoie & Bayly S. Wheeler & Edward J. Ralston & Satoru Uzawa & Job Dekker & Barbara J. Meyer, 2015. "Condensin-driven remodelling of X chromosome topology during dosage compensation," Nature, Nature, vol. 523(7559), pages 240-244, July.
    5. Mayank N. K. Choudhary & Kara Quaid & Xiaoyun Xing & Heather Schmidt & Ting Wang, 2023. "Widespread contribution of transposable elements to the rewiring of mammalian 3D genomes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. François Serra & Andrea Nieto-Aliseda & Lucía Fanlo-Escudero & Llorenç Rovirosa & Mónica Cabrera-Pasadas & Aleksey Lazarenkov & Blanca Urmeneta & Alvaro Alcalde-Merino & Emanuele M. Nola & Andrei L. O, 2024. "p53 rapidly restructures 3D chromatin organization to trigger a transcriptional response," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu Zuo & Guangming Chen & Zhimei Gao & Shuai Li & Yanyan Chen & Chenhui Huang & Juan Chen & Zhengjun Chen & Ming Lei & Qian Bian, 2021. "Stage-resolved Hi-C analyses reveal meiotic chromosome organizational features influencing homolog alignment," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    2. Li-Hsin Chang & Sourav Ghosh & Andrea Papale & Jennifer M. Luppino & Mélanie Miranda & Vincent Piras & Jéril Degrouard & Joanne Edouard & Mallory Poncelet & Nathan Lecouvreur & Sébastien Bloyer & Amél, 2023. "Multi-feature clustering of CTCF binding creates robustness for loop extrusion blocking and Topologically Associating Domain boundaries," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Botong Zhou & Ping Hu & Guichun Liu & Zhou Chang & Zhiwei Dong & Zihe Li & Yuan Yin & Zunzhe Tian & Ge Han & Wen Wang & Xueyan Li, 2024. "Evolutionary patterns and functional effects of 3D chromatin structures in butterflies with extensive genome rearrangements," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Yuan Yin & Huizhong Fan & Botong Zhou & Yibo Hu & Guangyi Fan & Jinhuan Wang & Fan Zhou & Wenhui Nie & Chenzhou Zhang & Lin Liu & Zhenyu Zhong & Wenbo Zhu & Guichun Liu & Zeshan Lin & Chang Liu & Jion, 2021. "Molecular mechanisms and topological consequences of drastic chromosomal rearrangements of muntjac deer," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    5. Lina Zheng & Wei Wang, 2022. "Regulation associated modules reflect 3D genome modularity associated with chromatin activity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Olivier Messina & Flavien Raynal & Julian Gurgo & Jean-Bernard Fiche & Vera Pancaldi & Marcelo Nollmann, 2023. "3D chromatin interactions involving Drosophila insulators are infrequent but preferential and arise before TADs and transcription," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Riccardo Calandrelli & Xingzhao Wen & John Lalith Charles Richard & Zhifei Luo & Tri C. Nguyen & Chien-Ju Chen & Zhijie Qi & Shuanghong Xue & Weizhong Chen & Zhangming Yan & Weixin Wu & Kathia Zaleta-, 2023. "Genome-wide analysis of the interplay between chromatin-associated RNA and 3D genome organization in human cells," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Bobae Yang & Sueun Kim & Woong-Jae Jung & Kyungwoo Kim & Sugyung Kim & Yong-Jin Kim & Tae-Gyun Kim & Eun-Chong Lee & Jung-Sik Joo & Chae Gyu Park & Sumin Oh & Kyung Hyun Yoo & Hyoung-Pyo Kim, 2023. "CTCF controls three-dimensional enhancer network underlying the inflammatory response of bone marrow-derived dendritic cells," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    9. Markus Götz & Olivier Messina & Sergio Espinola & Jean-Bernard Fiche & Marcelo Nollmann, 2022. "Multiple parameters shape the 3D chromatin structure of single nuclei at the doc locus in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Xiao Ge & Haiyan Huang & Keqi Han & Wangjie Xu & Zhaoxia Wang & Qiang Wu, 2023. "Outward-oriented sites within clustered CTCF boundaries are key for intra-TAD chromatin interactions and gene regulation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Sarah B. Reiff & Andrew J. Schroeder & Koray Kırlı & Andrea Cosolo & Clara Bakker & Luisa Mercado & Soohyun Lee & Alexander D. Veit & Alexander K. Balashov & Carl Vitzthum & William Ronchetti & Kent M, 2022. "The 4D Nucleome Data Portal as a resource for searching and visualizing curated nucleomics data," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Zhen-Hui Wang & Xin-Feng Wang & Tianyuan Lu & Ming-Rui Li & Peng Jiang & Jing Zhao & Si-Tong Liu & Xue-Qi Fu & Jonathan F. Wendel & Yves Peer & Bao Liu & Lin-Feng Li, 2022. "Reshuffling of the ancestral core-eudicot genome shaped chromatin topology and epigenetic modification in Panax," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Chong Wang & Xiang Liu & Jun Liang & Yohei Narita & Weiyue Ding & Difei Li & Luyao Zhang & Hongbo Wang & Merrin Man Long Leong & Isabella Hou & Catherine Gerdt & Chang Jiang & Qian Zhong & Zhonghui Ta, 2023. "A DNA tumor virus globally reprograms host 3D genome architecture to achieve immortal growth," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    14. Vinícius G. Contessoto & Olga Dudchenko & Erez Lieberman Aiden & Peter G. Wolynes & José N. Onuchic & Michele Pierro, 2023. "Interphase chromosomes of the Aedes aegypti mosquito are liquid crystalline and can sense mechanical cues," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Yi Li & James Lee & Lu Bai, 2024. "DNA methylation-based high-resolution mapping of long-distance chromosomal interactions in nucleosome-depleted regions," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Hossein Salari & Geneviève Fourel & Daniel Jost, 2024. "Transcription regulates the spatio-temporal dynamics of genes through micro-compartmentalization," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. Alon Diament & Tamir Tuller, 2015. "Improving 3D Genome Reconstructions Using Orthologous and Functional Constraints," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-22, May.
    18. Sonali Narang & Yohana Ghebrechristos & Nikki A. Evensen & Nina Murrell & Sylwia Jasinski & Talia H. Ostrow & David T. Teachey & Elizabeth A. Raetz & Timothee Lionnet & Matthew Witkowski & Iannis Aifa, 2024. "Clonal evolution of the 3D chromatin landscape in patients with relapsed pediatric B-cell acute lymphoblastic leukemia," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    19. Da Lin & Weize Xu & Ping Hong & Chengchao Wu & Zhihui Zhang & Siheng Zhang & Lingyu Xing & Bing Yang & Wei Zhou & Qin Xiao & Jinyue Wang & Cong Wang & Yu He & Xi Chen & Xiaojian Cao & Jiangwei Man & A, 2022. "Decoding the spatial chromatin organization and dynamic epigenetic landscapes of macrophage cells during differentiation and immune activation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    20. Brent S. Perlman & Noah Burget & Yeqiao Zhou & Gregory W. Schwartz & Jelena Petrovic & Zora Modrusan & Robert B. Faryabi, 2024. "Enhancer-promoter hubs organize transcriptional networks promoting oncogenesis and drug resistance," Nature Communications, Nature, vol. 15(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43841-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.