IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32002-y.html
   My bibliography  Save this article

Bipolar charge collecting structure enables overall water splitting on ferroelectric photocatalysts

Author

Listed:
  • Yong Liu

    (Chinese Academy of Sciences)

  • Mingjian Zhang

    (Peking University, Shenzhen Graduate School)

  • Zhuan Wang

    (Institute of Physics Chinese Academy of Science)

  • Jiandong He

    (Chinese Academy of Sciences)

  • Jie Zhang

    (Chinese Academy of Sciences)

  • Sheng Ye

    (Chinese Academy of Sciences)

  • Xiuli Wang

    (Chinese Academy of Sciences)

  • Dongfeng Li

    (Chinese Academy of Sciences)

  • Heng Yin

    (Chinese Academy of Sciences)

  • Qianhong Zhu

    (Chinese Academy of Sciences)

  • Huanwang Jing

    (Lanzhou University)

  • Yuxiang Weng

    (Institute of Physics Chinese Academy of Science)

  • Feng Pan

    (Peking University, Shenzhen Graduate School)

  • Ruotian Chen

    (Chinese Academy of Sciences)

  • Can Li

    (Chinese Academy of Sciences
    Lanzhou University)

  • Fengtao Fan

    (Chinese Academy of Sciences)

Abstract

Ferroelectrics are considered excellent photocatalytic candidates for solar fuel production because of the unidirectional charge separation and above-gap photovoltage. Nevertheless, the performance of ferroelectric photocatalysts is often moderate. A few studies showed that these types of photocatalysts could achieve overall water splitting. This paper proposes an approach to fabricating interfacial charge-collecting nanostructures on positive and negative domains of ferroelectric, enabling water splitting in ferroelectric photocatalysts. The present study observes efficient accumulations of photogenerated electrons and holes within their thermalization length (~50 nm) around Au nanoparticles located in the positive and negative domains of a BaTiO3 single crystal. Photocatalytic overall water splitting is observed on a ferroelectric BaTiO3 single crystal after assembling oxidation and reduction cocatalysts on the positively and negatively charged Au nanoparticles, respectively. The fabrication of bipolar charge-collecting structures on ferroelectrics to achieve overall water splitting offers a way to utilize the energetic photogenerated charges in solar energy conversion.

Suggested Citation

  • Yong Liu & Mingjian Zhang & Zhuan Wang & Jiandong He & Jie Zhang & Sheng Ye & Xiuli Wang & Dongfeng Li & Heng Yin & Qianhong Zhu & Huanwang Jing & Yuxiang Weng & Feng Pan & Ruotian Chen & Can Li & Fen, 2022. "Bipolar charge collecting structure enables overall water splitting on ferroelectric photocatalysts," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32002-y
    DOI: 10.1038/s41467-022-32002-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32002-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32002-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaowei Wang & Chao Zhu & Ya Deng & Ruihuan Duan & Jieqiong Chen & Qingsheng Zeng & Jiadong Zhou & Qundong Fu & Lu You & Song Liu & James H. Edgar & Peng Yu & Zheng Liu, 2021. "Author Correction: Van der Waals engineering of ferroelectric heterostructures for long-retention memory," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    2. Xiaowei Wang & Chao Zhu & Ya Deng & Ruihuan Duan & Jieqiong Chen & Qingsheng Zeng & Jiadong Zhou & Qundong Fu & Lu You & Song Liu & James H. Edgar & Peng Yu & Zheng Liu, 2021. "Van der Waals engineering of ferroelectric heterostructures for long-retention memory," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Peng Gao & Heng-Jui Liu & Yen-Lin Huang & Ying-Hao Chu & Ryo Ishikawa & Bin Feng & Ying Jiang & Naoya Shibata & En-Ge Wang & Yuichi Ikuhara, 2016. "Atomic mechanism of polarization-controlled surface reconstruction in ferroelectric thin films," Nature Communications, Nature, vol. 7(1), pages 1-6, September.
    4. Shuiyuan Wang & Lan Liu & Lurong Gan & Huawei Chen & Xiang Hou & Yi Ding & Shunli Ma & David Wei Zhang & Peng Zhou, 2021. "Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Tsuyoshi Takata & Junzhe Jiang & Yoshihisa Sakata & Mamiko Nakabayashi & Naoya Shibata & Vikas Nandal & Kazuhiko Seki & Takashi Hisatomi & Kazunari Domen, 2020. "Photocatalytic water splitting with a quantum efficiency of almost unity," Nature, Nature, vol. 581(7809), pages 411-414, May.
    6. Marin Alexe & Dietrich Hesse, 2011. "Tip-enhanced photovoltaic effects in bismuth ferrite," Nature Communications, Nature, vol. 2(1), pages 1-5, September.
    7. M. G. Kibria & S. Zhao & F. A. Chowdhury & Q. Wang & H. P. T. Nguyen & M. L. Trudeau & H. Guo & Z. Mi, 2014. "Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting," Nature Communications, Nature, vol. 5(1), pages 1-6, September.
    8. Ruotian Chen & Shan Pang & Hongyu An & Jian Zhu & Sheng Ye & Yuying Gao & Fengtao Fan & Can Li, 2018. "Charge separation via asymmetric illumination in photocatalytic Cu2O particles," Nature Energy, Nature, vol. 3(8), pages 655-663, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Camilo A. Mesa & Michael Sachs & Ernest Pastor & Nicolas Gauriot & Alice J. Merryweather & Miguel A. Gomez-Gonzalez & Konstantin Ignatyev & Sixto Giménez & Akshay Rao & James R. Durrant & Raj Pandya, 2024. "Correlating activities and defects in (photo)electrocatalysts using in-situ multi-modal microscopic imaging," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Xiyi Li & Chao Wang & Jianlong Yang & Youxun Xu & Yi Yang & Jiaguo Yu & Juan J. Delgado & Natalia Martsinovich & Xiao Sun & Xu-Sheng Zheng & Weixin Huang & Junwang Tang, 2023. "PdCu nanoalloy decorated photocatalysts for efficient and selective oxidative coupling of methane in flow reactors," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Jie Huang & Yuyang Kang & Jianan Liu & Tingting Yao & Jianhang Qiu & Peipei Du & Biaohong Huang & Weijin Hu & Yan Liang & Tengfeng Xie & Chunlin Chen & Li-Chang Yin & Lianzhou Wang & Hui-Ming Cheng & , 2023. "Gradient tungsten-doped Bi3TiNbO9 ferroelectric photocatalysts with additional built-in electric field for efficient overall water splitting," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongyang Yang & Jing Liang & Jingda Wu & Yunhuan Xiao & Jerry I. Dadap & Kenji Watanabe & Takashi Taniguchi & Ziliang Ye, 2024. "Non-volatile electrical polarization switching via domain wall release in 3R-MoS2 bilayer," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Sangyong Park & Dongyoung Lee & Juncheol Kang & Hojin Choi & Jin-Hong Park, 2023. "Laterally gated ferroelectric field effect transistor (LG-FeFET) using α-In2Se3 for stacked in-memory computing array," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Qingxuan Li & Siwei Wang & Zhenhai Li & Xuemeng Hu & Yongkai Liu & Jiajie Yu & Yafen Yang & Tianyu Wang & Jialin Meng & Qingqing Sun & David Wei Zhang & Lin Chen, 2024. "High-performance ferroelectric field-effect transistors with ultra-thin indium tin oxide channels for flexible and transparent electronics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Yannan Liu & Cheng-Hao Liu & Tushar Debnath & Yong Wang & Darius Pohl & Lucas V. Besteiro & Debora Motta Meira & Shengyun Huang & Fan Yang & Bernd Rellinghaus & Mohamed Chaker & Dmytro F. Perepichka &, 2023. "Silver nanoparticle enhanced metal-organic matrix with interface-engineering for efficient photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Kunpeng Si & Yifan Zhao & Peng Zhang & Xingguo Wang & Qianqian He & Juntian Wei & Bixuan Li & Yongxi Wang & Aiping Cao & Zhigao Hu & Peizhe Tang & Feng Ding & Yongji Gong, 2024. "Quasi-equilibrium growth of inch-scale single-crystal monolayer α-In2Se3 on fluor-phlogopite," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Guangri Jia & Fusai Sun & Tao Zhou & Ying Wang & Xiaoqiang Cui & Zhengxiao Guo & Fengtao Fan & Jimmy C. Yu, 2024. "Charge redistribution of a spatially differentiated ferroelectric Bi4Ti3O12 single crystal for photocatalytic overall water splitting," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Yimeng Li & Li Yang & Huijie He & Lei Sun & Honglei Wang & Xu Fang & Yanliang Zhao & Daoyuan Zheng & Yu Qi & Zhen Li & Weiqiao Deng, 2022. "In situ photodeposition of platinum clusters on a covalent organic framework for photocatalytic hydrogen production," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Sahar Pakdel & Asbjørn Rasmussen & Alireza Taghizadeh & Mads Kruse & Thomas Olsen & Kristian S. Thygesen, 2024. "High-throughput computational stacking reveals emergent properties in natural van der Waals bilayers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Vikas Nandal & Ryota Shoji & Hiroyuki Matsuzaki & Akihiro Furube & Lihua Lin & Takashi Hisatomi & Masanori Kaneko & Koichi Yamashita & Kazunari Domen & Kazuhiko Seki, 2021. "Unveiling charge dynamics of visible light absorbing oxysulfide for efficient overall water splitting," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    10. Chunzhi Li & Jiali Liu & He Li & Kaifeng Wu & Junhui Wang & Qihua Yang, 2022. "Covalent organic frameworks with high quantum efficiency in sacrificial photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Qitao Chen & Baodong Mao & Yanhong Liu & Yunjie Zhou & Hui Huang & Song Wang & Longhua Li & Wei-Cheng Yan & Weidong Shi & Zhenhui Kang, 2024. "Designing 2D carbon dot nanoreactors for alcohol oxidation coupled with hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Takuya Suguro & Fuminao Kishimoto & Nobuko Kariya & Tsuyoshi Fukui & Mamiko Nakabayashi & Naoya Shibata & Tsuyoshi Takata & Kazunari Domen & Kazuhiro Takanabe, 2022. "A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Yuyan Huang & Minhui Shen & Huijie Yan & Yingge He & Jianqiao Xu & Fang Zhu & Xin Yang & Yu-Xin Ye & Gangfeng Ouyang, 2024. "Achieving a solar-to-chemical efficiency of 3.6% in ambient conditions by inhibiting interlayer charges transport," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Kenji Katayama & Kei Kawaguchi & Yuta Egawa & Zhenhua Pan, 2022. "Local Charge Carrier Dynamics for Photocatalytic Materials Using Pattern-Illumination Time-Resolved Phase Microscopy," Energies, MDPI, vol. 15(24), pages 1-13, December.
    15. Camilo A. Mesa & Michael Sachs & Ernest Pastor & Nicolas Gauriot & Alice J. Merryweather & Miguel A. Gomez-Gonzalez & Konstantin Ignatyev & Sixto Giménez & Akshay Rao & James R. Durrant & Raj Pandya, 2024. "Correlating activities and defects in (photo)electrocatalysts using in-situ multi-modal microscopic imaging," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Lu, Buchu & Yan, Xiangyu & Liu, Qibin, 2023. "Enhanced solar hydrogen generation with the direct coupling of photo and thermal energy – An experimental and mechanism study," Applied Energy, Elsevier, vol. 331(C).
    17. Rong Bao & Shuiyuan Wang & Xiaoxian Liu & Kejun Tu & Jingquan Liu & Xiaohe Huang & Chunsen Liu & Peng Zhou & Shen Liu, 2024. "Neuromorphic electro-stimulation based on atomically thin semiconductor for damage-free inflammation inhibition," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Guangdi Feng & Qiuxiang Zhu & Xuefeng Liu & Luqiu Chen & Xiaoming Zhao & Jianquan Liu & Shaobing Xiong & Kexiang Shan & Zhenzhong Yang & Qinye Bao & Fangyu Yue & Hui Peng & Rong Huang & Xiaodong Tang , 2024. "A ferroelectric fin diode for robust non-volatile memory," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Xiyi Li & Chao Wang & Jianlong Yang & Youxun Xu & Yi Yang & Jiaguo Yu & Juan J. Delgado & Natalia Martsinovich & Xiao Sun & Xu-Sheng Zheng & Weixin Huang & Junwang Tang, 2023. "PdCu nanoalloy decorated photocatalysts for efficient and selective oxidative coupling of methane in flow reactors," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Lakhera, Sandeep Kumar & Rajan, Aswathy & T.P., Rugma & Bernaurdshaw, Neppolian, 2021. "A review on particulate photocatalytic hydrogen production system: Progress made in achieving high energy conversion efficiency and key challenges ahead," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32002-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.