IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49364-0.html
   My bibliography  Save this article

Facet-selective growth of halide perovskite/2D semiconductor van der Waals heterostructures for improved optical gain and lasing

Author

Listed:
  • Liqiang Zhang

    (Hunan University)

  • Yiliu Wang

    (Hunan University)

  • Anshi Chu

    (Hunan University)

  • Zhengwei Zhang

    (Central South University)

  • Miaomiao Liu

    (Hunan University)

  • Xiaohua Shen

    (Hunan University)

  • Bailing Li

    (Hunan University)

  • Xu Li

    (Hunan University)

  • Chen Yi

    (Hunan University)

  • Rong Song

    (Hunan University)

  • Yingying Liu

    (Hunan University)

  • Xiujuan Zhuang

    (Hunan University)

  • Xidong Duan

    (Hunan University)

Abstract

The tunable properties of halide perovskite/two dimensional (2D) semiconductor mixed-dimensional van der Waals heterostructures offer high flexibility for innovating optoelectronic and photonic devices. However, the general and robust growth of high-quality monocrystalline halide perovskite/2D semiconductor heterostructures with attractive optical properties has remained challenging. Here, we demonstrate a universal van der Waals heteroepitaxy strategy to synthesize a library of facet-specific single-crystalline halide perovskite/2D semiconductor (multi)heterostructures. The obtained heterostructures can be broadly tailored by selecting the coupling layer of interest, and can include perovskites varying from all-inorganic to organic-inorganic hybrid counterparts, individual transition metal dichalcogenides or 2D heterojunctions. The CsPbI2Br/WSe2 heterostructures demonstrate ultrahigh optical gain coefficient, reduced gain threshold and prolonged gain lifetime, which are attributed to the reduced energetic disorder. Accordingly, the self-organized halide perovskite/2D semiconductor heterostructure lasers show highly reproducible single-mode lasing with largely reduced lasing threshold and improved stability. Our findings provide a high-quality and versatile material platform for probing unique optoelectronic and photonic physics and developing further electrically driven on-chip lasers, nanophotonic devices and electronic-photonic integrated systems.

Suggested Citation

  • Liqiang Zhang & Yiliu Wang & Anshi Chu & Zhengwei Zhang & Miaomiao Liu & Xiaohua Shen & Bailing Li & Xu Li & Chen Yi & Rong Song & Yingying Liu & Xiujuan Zhuang & Xidong Duan, 2024. "Facet-selective growth of halide perovskite/2D semiconductor van der Waals heterostructures for improved optical gain and lasing," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49364-0
    DOI: 10.1038/s41467-024-49364-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49364-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49364-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuan Liu & Xidong Duan & Hyeon-Jin Shin & Seongjun Park & Yu Huang & Xiangfeng Duan, 2021. "Promises and prospects of two-dimensional transistors," Nature, Nature, vol. 591(7848), pages 43-53, March.
    2. Andrew P. Schlaus & Michael S. Spencer & Kiyoshi Miyata & Fang Liu & Xiaoxia Wang & Ipshita Datta & Michal Lipson & Anlian Pan & X.-Y. Zhu, 2019. "How lasing happens in CsPbBr3 perovskite nanowires," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    3. Yang Gao & Zhibo Liu & Dong-Ming Sun & Le Huang & Lai-Peng Ma & Li-Chang Yin & Teng Ma & Zhiyong Zhang & Xiu-Liang Ma & Lian-Mao Peng & Hui-Ming Cheng & Wencai Ren, 2015. "Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils," Nature Communications, Nature, vol. 6(1), pages 1-10, December.
    4. Ye Yang & Mengjin Yang & David T. Moore & Yong Yan & Elisa M. Miller & Kai Zhu & Matthew C. Beard, 2017. "Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films," Nature Energy, Nature, vol. 2(2), pages 1-7, February.
    5. Eunice Y. Paik & Long Zhang & G. William Burg & Rahul Gogna & Emanuel Tutuc & Hui Deng, 2019. "Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures," Nature, Nature, vol. 576(7785), pages 80-84, December.
    6. Bei Zhao & Zhong Wan & Yuan Liu & Junqing Xu & Xiangdong Yang & Dingyi Shen & Zucheng Zhang & Chunhao Guo & Qi Qian & Jia Li & Ruixia Wu & Zhaoyang Lin & Xingxu Yan & Bailing Li & Zhengwei Zhang & Hui, 2021. "High-order superlattices by rolling up van der Waals heterostructures," Nature, Nature, vol. 591(7850), pages 385-390, March.
    7. Ye Yang & Yong Yan & Mengjin Yang & Sukgeun Choi & Kai Zhu & Joseph M. Luther & Matthew C. Beard, 2015. "Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
    8. Yuan Liu & Yu Huang & Xiangfeng Duan, 2019. "Van der Waals integration before and beyond two-dimensional materials," Nature, Nature, vol. 567(7748), pages 323-333, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yurou Zhang & Miaoqiang Lyu & Tengfei Qiu & Ekyu Han & Il Ku Kim & Min-Cherl Jung & Yun Hau Ng & Jung-Ho Yun & Lianzhou Wang, 2020. "Halide Perovskite Single Crystals: Optoelectronic Applications and Strategical Approaches," Energies, MDPI, vol. 13(16), pages 1-27, August.
    2. Stefania Cacovich & Guillaume Vidon & Matteo Degani & Marie Legrand & Laxman Gouda & Jean-Baptiste Puel & Yana Vaynzof & Jean-François Guillemoles & Daniel Ory & Giulia Grancini, 2022. "Imaging and quantifying non-radiative losses at 23% efficient inverted perovskite solar cells interfaces," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Jun Yu & Han Wang & Fuwei Zhuge & Zirui Chen & Man Hu & Xiang Xu & Yuhui He & Ying Ma & Xiangshui Miao & Tianyou Zhai, 2023. "Simultaneously ultrafast and robust two-dimensional flash memory devices based on phase-engineered edge contacts," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Sangyong Park & Dongyoung Lee & Juncheol Kang & Hojin Choi & Jin-Hong Park, 2023. "Laterally gated ferroelectric field effect transistor (LG-FeFET) using α-In2Se3 for stacked in-memory computing array," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Juan Francisco Gonzalez Marin & Dmitrii Unuchek & Zhe Sun & Cheol Yeon Cheon & Fedele Tagarelli & Kenji Watanabe & Takashi Taniguchi & Andras Kis, 2022. "Room-temperature electrical control of polarization and emission angle in a cavity-integrated 2D pulsed LED," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Chengjian He & Chuan Xu & Chen Chen & Jinmeng Tong & Tianya Zhou & Su Sun & Zhibo Liu & Hui-Ming Cheng & Wencai Ren, 2024. "Unusually high thermal conductivity in suspended monolayer MoSi2N4," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Jiaxin Zhao & Antonio Fieramosca & Kevin Dini & Ruiqi Bao & Wei Du & Rui Su & Yuan Luo & Weijie Zhao & Daniele Sanvitto & Timothy C. H. Liew & Qihua Xiong, 2023. "Exciton polariton interactions in Van der Waals superlattices at room temperature," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Lutao Li & Junjie Yao & Juntong Zhu & Yuan Chen & Chen Wang & Zhicheng Zhou & Guoxiang Zhao & Sihan Zhang & Ruonan Wang & Jiating Li & Xiangyi Wang & Zheng Lu & Lingbo Xiao & Qiang Zhang & Guifu Zou, 2023. "Colloid driven low supersaturation crystallization for atomically thin Bismuth halide perovskite," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Xiaodong Zhang & Chenxi Huang & Zeyu Li & Jun Fu & Jiaran Tian & Zhuping Ouyang & Yuliang Yang & Xiang Shao & Yulei Han & Zhenhua Qiao & Hualing Zeng, 2024. "Reliable wafer-scale integration of two-dimensional materials and metal electrodes with van der Waals contacts," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Xinyu Chen & Shuaihua Lu & Qian Chen & Qionghua Zhou & Jinlan Wang, 2024. "From bulk effective mass to 2D carrier mobility accurate prediction via adversarial transfer learning," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Lu Li & Qinqin Wang & Fanfan Wu & Qiaoling Xu & Jinpeng Tian & Zhiheng Huang & Qinghe Wang & Xuan Zhao & Qinghua Zhang & Qinkai Fan & Xiuzhen Li & Yalin Peng & Yangkun Zhang & Kunshan Ji & Aomiao Zhi , 2024. "Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Guojing Hu & Changlong Wang & Shasha Wang & Ying Zhang & Yan Feng & Zhi Wang & Qian Niu & Zhenyu Zhang & Bin Xiang, 2023. "Long-range skin Josephson supercurrent across a van der Waals ferromagnet," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    13. Chenxinyu Pan & Yuanbiao Tong & Haoliang Qian & Alexey V. Krasavin & Jialin Li & Jiajie Zhu & Yiyun Zhang & Bowen Cui & Zhiyong Li & Chenming Wu & Lufang Liu & Linjun Li & Xin Guo & Anatoly V. Zayats , 2024. "Large area single crystal gold of single nanometer thickness for nanophotonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Pei-Yu Huang & Bi-Yi Jiang & Hong-Ji Chen & Jia-Yi Xu & Kang Wang & Cheng-Yi Zhu & Xin-Yan Hu & Dong Li & Liang Zhen & Fei-Chi Zhou & Jing-Kai Qin & Cheng-Yan Xu, 2023. "Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Ming Deng & Ziqing Li & Shiyuan Liu & Xiaosheng Fang & Limin Wu, 2024. "Wafer-scale integration of two-dimensional perovskite oxides towards motion recognition," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. You Meng & Xiaocui Li & Xiaolin Kang & Wanpeng Li & Wei Wang & Zhengxun Lai & Weijun Wang & Quan Quan & Xiuming Bu & SenPo Yip & Pengshan Xie & Dong Chen & Dengji Li & Fei Wang & Chi-Fung Yeung & Chan, 2023. "Van der Waals nanomesh electronics on arbitrary surfaces," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Xiaokun Yang & Rui He & Zheyi Lu & Yang Chen & Liting Liu & Donglin Lu & Likuan Ma & Quanyang Tao & Lingan Kong & Zhaojing Xiao & Songlong Liu & Zhiwei Li & Shuimei Ding & Xiao Liu & Yunxin Li & Yiliu, 2024. "Large-scale sub-5-nm vertical transistors by van der Waals integration," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    18. Yu Pu & Haijun Su & Congcong Liu & Min Guo & Lin Liu & Hengzhi Fu, 2023. "A Review on Buried Interface of Perovskite Solar Cells," Energies, MDPI, vol. 16(13), pages 1-30, June.
    19. Xin Gao & Liming Zheng & Fang Luo & Jun Qian & Jingyue Wang & Mingzhi Yan & Wendong Wang & Qinci Wu & Junchuan Tang & Yisen Cao & Congwei Tan & Jilin Tang & Mengjian Zhu & Yani Wang & Yanglizhi Li & L, 2022. "Integrated wafer-scale ultra-flat graphene by gradient surface energy modulation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Songhua Cai & Yingzhuo Lun & Dianxiang Ji & Peng Lv & Lu Han & Changqing Guo & Yipeng Zang & Si Gao & Yifan Wei & Min Gu & Chunchen Zhang & Zhengbin Gu & Xueyun Wang & Christopher Addiego & Daining Fa, 2022. "Enhanced polarization and abnormal flexural deformation in bent freestanding perovskite oxides," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49364-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.