IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41824-3.html
   My bibliography  Save this article

UV-B irradiation-activated E3 ligase GmILPA1 modulates gibberellin catabolism to increase plant height in soybean

Author

Listed:
  • Jiaqi Sun

    (Shandong University)

  • Shiyu Huang

    (Shandong University)

  • Qing Lu

    (Shandong University)

  • Shuo Li

    (Shandong University)

  • Shizhen Zhao

    (Shandong University)

  • Xiaojian Zheng

    (Shandong University)

  • Qian Zhou

    (Shandong University)

  • Wenxiao Zhang

    (Shandong University)

  • Jie Li

    (Shandong University)

  • Lili Wang

    (Shandong University)

  • Ke Zhang

    (Shandong University)

  • Wenyu Zheng

    (Shandong University)

  • Xianzhong Feng

    (Chinese Academy of Sciences)

  • Baohui Liu

    (Guangzhou University)

  • Fanjiang Kong

    (Guangzhou University)

  • Fengning Xiang

    (Shandong University)

Abstract

Plant height is a key agronomic trait that affects yield and is controlled by both phytohormone gibberellin (GA) and ultraviolet-B (UV-B) irradiation. However, whether and how plant height is modulated by UV-B-mediated changes in GA metabolism are not well understood. It has not been reported that the E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) is involved in the regulation of plant growth in response to environmental factors. We perform a forward genetic screen in soybean and find that a mutation in Glycine max Increased Leaf Petiole Angle1 (GmILPA1), encoding a subunit of the APC/C, lead to dwarfism under UV-B irradiation. UV-B promotes the accumulation of GmILPA1, which ubiquitinate the GA catabolic enzyme GA2 OXIDASE-like (GmGA2ox-like), resulting in its degradation in a UV-B-dependent manner. Another E3 ligase, GmUBL1, also ubiquitinate GmGA2ox-like and enhance the GmILPA1-mediated degradation of GmGA2ox-like, which suggest that GmILPA1-GmGA2ox-like module counteract the UV-B-mediated reduction of bioactive GAs. We also determine that GmILPA1 is a target of selection during soybean domestication and breeding. The deletion (Indel-665) in the promoter might facilitate the adaptation of soybean to high UV-B irradiation. This study indicates that an evolutionary GmILPA1 variant has the capability to develop ideal plant architecture with soybean cultivars.

Suggested Citation

  • Jiaqi Sun & Shiyu Huang & Qing Lu & Shuo Li & Shizhen Zhao & Xiaojian Zheng & Qian Zhou & Wenxiao Zhang & Jie Li & Lili Wang & Ke Zhang & Wenyu Zheng & Xianzhong Feng & Baohui Liu & Fanjiang Kong & Fe, 2023. "UV-B irradiation-activated E3 ligase GmILPA1 modulates gibberellin catabolism to increase plant height in soybean," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41824-3
    DOI: 10.1038/s41467-023-41824-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41824-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41824-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeremy Schmutz & Steven B. Cannon & Jessica Schlueter & Jianxin Ma & Therese Mitros & William Nelson & David L. Hyten & Qijian Song & Jay J. Thelen & Jianlin Cheng & Dong Xu & Uffe Hellsten & Gregory , 2010. "Genome sequence of the palaeopolyploid soybean," Nature, Nature, vol. 463(7278), pages 178-183, January.
    2. Jeremy Schmutz & Steven B. Cannon & Jessica Schlueter & Jianxin Ma & Therese Mitros & William Nelson & David L. Hyten & Qijian Song & Jay J. Thelen & Jianlin Cheng & Dong Xu & Uffe Hellsten & Gregory , 2010. "Erratum: Genome sequence of the palaeopolyploid soybean," Nature, Nature, vol. 465(7294), pages 120-120, May.
    3. Jinrong Peng & Donald E. Richards & Nigel M. Hartley & George P. Murphy & Katrien M. Devos & John E. Flintham & James Beales & Leslie J. Fish & Anthony J. Worland & Fatima Pelica & Duraialagaraja Sudh, 1999. "‘Green revolution’ genes encode mutant gibberellin response modulators," Nature, Nature, vol. 400(6741), pages 256-261, July.
    4. Liu, H. & Hu, B. & Zhang, L. & Zhao, X.J. & Shang, K.Z. & Wang, Y.S. & Wang, J., 2017. "Ultraviolet radiation over China: Spatial distribution and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1371-1383.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shichen Li & Zhihui Sun & Qing Sang & Chao Qin & Lingping Kong & Xin Huang & Huan Liu & Tong Su & Haiyang Li & Milan He & Chao Fang & Lingshuang Wang & Shuangrong Liu & Bin Liu & Baohui Liu & Xiangdon, 2023. "Soybean reduced internode 1 determines internode length and improves grain yield at dense planting," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shichen Li & Zhihui Sun & Qing Sang & Chao Qin & Lingping Kong & Xin Huang & Huan Liu & Tong Su & Haiyang Li & Milan He & Chao Fang & Lingshuang Wang & Shuangrong Liu & Bin Liu & Baohui Liu & Xiangdon, 2023. "Soybean reduced internode 1 determines internode length and improves grain yield at dense planting," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Yukari Nagatoshi & Kenta Ikazaki & Yasufumi Kobayashi & Nobuyuki Mizuno & Ryohei Sugita & Yumiko Takebayashi & Mikiko Kojima & Hitoshi Sakakibara & Natsuko I. Kobayashi & Keitaro Tanoi & Kenichiro Fuj, 2023. "Phosphate starvation response precedes abscisic acid response under progressive mild drought in plants," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Octavio R. Salazar & Ke Chen & Vanessa J. Melino & Muppala P. Reddy & Eva Hřibová & Jana Čížková & Denisa Beránková & Juan Pablo Arciniegas Vega & Lina María Cáceres Leal & Manuel Aranda & Lukasz Jare, 2024. "SOS1 tonoplast neo-localization and the RGG protein SALTY are important in the extreme salinity tolerance of Salicornia bigelovii," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    4. Wolfgang Goettel & Hengyou Zhang & Ying Li & Zhenzhen Qiao & He Jiang & Dianyun Hou & Qijian Song & Vincent R. Pantalone & Bao-Hua Song & Deyue Yu & Yong-qiang Charles An, 2022. "POWR1 is a domestication gene pleiotropically regulating seed quality and yield in soybean," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Isaac Njaci & Bernice Waweru & Nadia Kamal & Meki Shehabu Muktar & David Fisher & Heidrun Gundlach & Collins Muli & Lucy Muthui & Mary Maranga & Davies Kiambi & Brigitte L. Maass & Peter M. F. Emmrich, 2023. "Chromosome-level genome assembly and population genomic resource to accelerate orphan crop lablab breeding," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Jerzy H. Czembor & Elzbieta Czembor & Marcin Krystek & Juliusz Pukacki, 2023. "AgroGenome: Interactive Genomic-Based Web Server Developed Based on Data Collected for Accessions Stored in Polish Genebank," Agriculture, MDPI, vol. 13(1), pages 1-16, January.
    7. Weidong Wang & Liyang Chen & Kevin Fengler & Joy Bolar & Victor Llaca & Xutong Wang & Chancelor B. Clark & Tomara J. Fleury & Jon Myrvold & David Oneal & Maria Magdalena Dyk & Ashley Hudson & Jesse Mu, 2021. "A giant NLR gene confers broad-spectrum resistance to Phytophthora sojae in soybean," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    8. Xiao Feng & Qipian Chen & Weihong Wu & Jiexin Wang & Guohong Li & Shaohua Xu & Shao Shao & Min Liu & Cairong Zhong & Chung-I Wu & Suhua Shi & Ziwen He, 2024. "Genomic evidence for rediploidization and adaptive evolution following the whole-genome triplication," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Jessen V. Bredeson & Jessica B. Lyons & Ibukun O. Oniyinde & Nneka R. Okereke & Olufisayo Kolade & Ikenna Nnabue & Christian O. Nwadili & Eva Hřibová & Matthew Parker & Jeremiah Nwogha & Shengqiang Sh, 2022. "Chromosome evolution and the genetic basis of agronomically important traits in greater yam," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Aron Park & Se-Hee Kang & Byeong-Hee Kang & Sreeparna Chowdhury & Seo-Young Shin & Won-Ho Lee & Jeong-Dong Lee & Sungwoo Lee & Yu-Mi Choi & Bo-Keun Ha, 2023. "Identification of a Novel KTi-1 Allele Associated with Reduced Trypsin Inhibitor Activity in Soybean Accessions," Agriculture, MDPI, vol. 13(11), pages 1, October.
    11. Rahul Kumar & Prashant Swapnil & Mukesh Meena & Shweta Selpair & Bal Govind Yadav, 2022. "Plant Growth-Promoting Rhizobacteria (PGPR): Approaches to Alleviate Abiotic Stresses for Enhancement of Growth and Development of Medicinal Plants," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    12. David Wickell & Li-Yaung Kuo & Hsiao-Pei Yang & Amra Dhabalia Ashok & Iker Irisarri & Armin Dadras & Sophie de Vries & Jan de Vries & Yao-Moan Huang & Zheng Li & Michael S. Barker & Nolan T. Hartwick , 2021. "Underwater CAM photosynthesis elucidated by Isoetes genome," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    13. Zilong Guo & Hongrui Cao & Jing Zhao & Shuang Bai & Wenting Peng & Jian Li & Lili Sun & Liyu Chen & Zhihao Lin & Chen Shi & Qing Yang & Yongqing Yang & Xiurong Wang & Jiang Tian & Zhichang Chen & Hong, 2022. "A natural uORF variant confers phosphorus acquisition diversity in soybean," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Wenlong Yang & Ameer Ahmed Mirbahar & Muhammad Shoaib & Xueyuan Lou & Linhe Sun & Jiazhu Sun & Kehui Zhan & Aimin Zhang, 2022. "The Carotenoid Cleavage Dioxygenase Gene CCD7-B , at Large, Is Associated with Tillering in Common Wheat," Agriculture, MDPI, vol. 12(2), pages 1-14, February.
    15. Taikui Zhang & Weichen Huang & Lin Zhang & De-Zhu Li & Ji Qi & Hong Ma, 2024. "Phylogenomic profiles of whole-genome duplications in Poaceae and landscape of differential duplicate retention and losses among major Poaceae lineages," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    16. Eva Johansson & Faraz Muneer & Thomas Prade, 2023. "Plant Breeding to Mitigate Climate Change—Present Status and Opportunities with an Assessment of Winter Wheat Cultivation in Northern Europe as an Example," Sustainability, MDPI, vol. 15(16), pages 1-14, August.
    17. Liqiang Song & Ruihui Wang & Xueju Yang & Aimin Zhang & Dongcheng Liu, 2023. "Molecular Markers and Their Applications in Marker-Assisted Selection (MAS) in Bread Wheat ( Triticum aestivum L.)," Agriculture, MDPI, vol. 13(3), pages 1-18, March.
    18. Shi, Hongrong & Yang, Dazhi & Wang, Wenting & Fu, Disong & Gao, Ling & Zhang, Jinqiang & Hu, Bo & Shan, Yunpeng & Zhang, Yingjie & Bian, Yuxuan & Chen, Hongbin & Xia, Xiangao, 2023. "First estimation of high-resolution solar photovoltaic resource maps over China with Fengyun-4A satellite and machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    19. Zhanglun Sun & Tianrun Mei & Tingting Feng & Hao Ai & Yafeng Ye & Sumei Duan & Binmei Liu & Xianzhong Huang, 2023. "Deletion of the OsLA1 Gene Leads to Multi-Tillering and Lazy Phenotypes in Rice," Agriculture, MDPI, vol. 13(11), pages 1-11, November.
    20. Huali Yang & Qinqin Yang & Yiwei Kang & Miao Zhang & Xiaodeng Zhan & Liyong Cao & Shihua Cheng & Weixun Wu & Yingxin Zhang, 2022. "Finding Stable QTL for Plant Height in Super Hybrid Rice," Agriculture, MDPI, vol. 12(2), pages 1-10, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41824-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.