IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54323-w.html
   My bibliography  Save this article

Face cells encode object parts more than facial configuration of illusory faces

Author

Listed:
  • Saloni Sharma

    (Harvard Medical School)

  • Kasper Vinken

    (Harvard Medical School)

  • Akshay V. Jagadeesh

    (Harvard Medical School)

  • Margaret S. Livingstone

    (Harvard Medical School)

Abstract

Humans perceive illusory faces in everyday objects with a face-like configuration, an illusion known as face pareidolia. Face-selective regions in humans and monkeys, believed to underlie face perception, have been shown to respond to face pareidolia images. Here, we investigated whether pareidolia selectivity in macaque inferotemporal cortex is explained by the face-like configuration that drives the human perception of illusory faces. We found that face cells responded selectively to pareidolia images. This selectivity did not correlate with human faceness ratings and did not require the face-like configuration. Instead, it was driven primarily by the “eye” parts of the illusory face, which are simply object parts when viewed in isolation. In contrast, human perceptual pareidolia relied primarily on the global configuration and could not be explained by “eye” parts. Our results indicate that face-cells encode local, generic features of illusory faces, in misalignment with human visual perception, which requires holistic information.

Suggested Citation

  • Saloni Sharma & Kasper Vinken & Akshay V. Jagadeesh & Margaret S. Livingstone, 2024. "Face cells encode object parts more than facial configuration of illusory faces," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54323-w
    DOI: 10.1038/s41467-024-54323-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54323-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54323-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Elena N. Waidmann & Kenji W. Koyano & Julie J. Hong & Brian E. Russ & David A. Leopold, 2022. "Local features drive identity responses in macaque anterior face patches," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Pinglei Bao & Liang She & Mason McGill & Doris Y. Tsao, 2020. "A map of object space in primate inferotemporal cortex," Nature, Nature, vol. 583(7814), pages 103-108, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vasiliki Bougou & Michaël Vanhoyland & Alexander Bertrand & Wim Paesschen & Hans Op De Beeck & Peter Janssen & Tom Theys, 2024. "Neuronal tuning and population representations of shape and category in human visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Hojin Jang & Frank Tong, 2024. "Improved modeling of human vision by incorporating robustness to blur in convolutional neural networks," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Mengna Yao & Bincheng Wen & Mingpo Yang & Jiebin Guo & Haozhou Jiang & Chao Feng & Yilei Cao & Huiguang He & Le Chang, 2023. "High-dimensional topographic organization of visual features in the primate temporal lobe," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    4. Elia Shahbazi & Timothy Ma & Martin Pernuš & Walter Scheirer & Arash Afraz, 2024. "Perceptography unveils the causal contribution of inferior temporal cortex to visual perception," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Laurent Caplette & Nicholas B. Turk-Browne, 2024. "Computational reconstruction of mental representations using human behavior," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    6. Olivia Rose & James Johnson & Binxu Wang & Carlos R. Ponce, 2021. "Visual prototypes in the ventral stream are attuned to complexity and gaze behavior," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    7. Daniel Pacheco-Estefan & Marie-Christin Fellner & Lukas Kunz & Hui Zhang & Peter Reinacher & Charlotte Roy & Armin Brandt & Andreas Schulze-Bonhage & Linglin Yang & Shuang Wang & Jing Liu & Gui Xue & , 2024. "Maintenance and transformation of representational formats during working memory prioritization," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54323-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.