IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41435-y.html
   My bibliography  Save this article

Natural product P57 induces hypothermia through targeting pyridoxal kinase

Author

Listed:
  • Ruina Wang

    (Shanghai Medical College, Fudan University)

  • Lei Xiao

    (Shanghai Medical College, Fudan University)

  • Jianbo Pan

    (the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University)

  • Guangsen Bao

    (Shanghai Medical College, Fudan University)

  • Yunmei Zhu

    (the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University)

  • Di Zhu

    (Shanghai Medical College, Fudan University)

  • Jun Wang

    (Chinese Academy of Sciences)

  • Chengfeng Pei

    (Chinese Academy of Sciences)

  • Qinfeng Ma

    (the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University)

  • Xian Fu

    (the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University)

  • Ziruoyu Wang

    (Shanghai Medical College, Fudan University)

  • Mengdi Zhu

    (Chinese Academy of Sciences)

  • Guoxiang Wang

    (Shanghai Medical College, Fudan University)

  • Ling Gong

    (Shanghai Medical College, Fudan University)

  • Qiuping Tong

    (Shanghai Medical College, Fudan University)

  • Min Jiang

    (Shanghai Medical College, Fudan University)

  • Junchi Hu

    (the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University)

  • Miao He

    (Shanghai Medical College, Fudan University)

  • Yun Wang

    (Shanghai Medical College, Fudan University)

  • Tiejun Li

    (Naval Medical University)

  • Chunmin Liang

    (Basic Medical School of Fudan University)

  • Wei Li

    (China Pharmaceutical University)

  • Chunmei Xia

    (Shanghai Medical College, Fudan University)

  • Zengxia Li

    (Shanghai Medical College, Fudan University)

  • Dengke K. Ma

    (University of California San Francisco)

  • Minjia Tan

    (Chinese Academy of Sciences)

  • Jun Yan Liu

    (the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University)

  • Wei Jiang

    (Shanghai Medical College, Fudan University)

  • Cheng Luo

    (Chinese Academy of Sciences)

  • Biao Yu

    (Chinese Academy of Sciences)

  • Yongjun Dang

    (the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University)

Abstract

Induction of hypothermia during hibernation/torpor enables certain mammals to survive under extreme environmental conditions. However, pharmacological induction of hypothermia in most mammals remains a huge challenge. Here we show that a natural product P57 promptly induces hypothermia and decreases energy expenditure in mice. Mechanistically, P57 inhibits the kinase activity of pyridoxal kinase (PDXK), a key metabolic enzyme of vitamin B6 catalyzing phosphorylation of pyridoxal (PL), resulting in the accumulation of PL in hypothalamus to cause hypothermia. The hypothermia induced by P57 is significantly blunted in the mice with knockout of PDXK in the preoptic area (POA) of hypothalamus. We further found that P57 and PL have consistent effects on gene expression regulation in hypothalamus, and they may activate medial preoptic area (MPA) neurons in POA to induce hypothermia. Taken together, our findings demonstrate that P57 has a potential application in therapeutic hypothermia through regulation of vitamin B6 metabolism and PDXK serves as a previously unknown target of P57 in thermoregulation. In addition, P57 may serve as a chemical probe for exploring the neuron circuitry related to hypothermia state in mice.

Suggested Citation

  • Ruina Wang & Lei Xiao & Jianbo Pan & Guangsen Bao & Yunmei Zhu & Di Zhu & Jun Wang & Chengfeng Pei & Qinfeng Ma & Xian Fu & Ziruoyu Wang & Mengdi Zhu & Guoxiang Wang & Ling Gong & Qiuping Tong & Min J, 2023. "Natural product P57 induces hypothermia through targeting pyridoxal kinase," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41435-y
    DOI: 10.1038/s41467-023-41435-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41435-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41435-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shinjae Chung & Franz Weber & Peng Zhong & Chan Lek Tan & Thuc Nghi Nguyen & Kevin T. Beier & Nikolai Hörmann & Wei-Cheng Chang & Zhe Zhang & Johnny Phong Do & Shenqin Yao & Michael J. Krashes & Bosil, 2017. "Identification of preoptic sleep neurons using retrograde labelling and gene profiling," Nature, Nature, vol. 545(7655), pages 477-481, May.
    2. Zhi Zhang & Fernando M. C. V. Reis & Yanlin He & Jae W. Park & Johnathon R. DiVittorio & Nilla Sivakumar & J. Edward van Veen & Sandra Maesta-Pereira & Michael Shum & India Nichols & Megan G. Massa & , 2020. "Estrogen-sensitive medial preoptic area neurons coordinate torpor in mice," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    3. Sinisa Hrvatin & Senmiao Sun & Oren F. Wilcox & Hanqi Yao & Aurora J. Lavin-Peter & Marcelo Cicconet & Elena G. Assad & Michaela E. Palmer & Sage Aronson & Alexander S. Banks & Eric C. Griffith & Mich, 2020. "Neurons that regulate mouse torpor," Nature, Nature, vol. 583(7814), pages 115-121, July.
    4. Shaowen Qian & Sumei Yan & Ruiqi Pang & Jing Zhang & Kai Liu & Zhiyue Shi & Zhaoqun Wang & Penghui Chen & Yanjie Zhang & Tiantian Luo & Xianli Hu & Ying Xiong & Yi Zhou, 2022. "A temperature-regulated circuit for feeding behavior," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Kevin X. Zhang & Shane D’Souza & Brian A. Upton & Stace Kernodle & Shruti Vemaraju & Gowri Nayak & Kevin D. Gaitonde & Amanda L. Holt & Courtney D. Linne & April N. Smith & Nathan T. Petts & Matthew B, 2020. "Violet-light suppression of thermogenesis by opsin 5 hypothalamic neurons," Nature, Nature, vol. 585(7825), pages 420-425, September.
    6. Tohru M. Takahashi & Genshiro A. Sunagawa & Shingo Soya & Manabu Abe & Katsuyasu Sakurai & Kiyomi Ishikawa & Masashi Yanagisawa & Hiroshi Hama & Emi Hasegawa & Atsushi Miyawaki & Kenji Sakimura & Masa, 2020. "A discrete neuronal circuit induces a hibernation-like state in rodents," Nature, Nature, vol. 583(7814), pages 109-114, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuai Zhang & Xinpei Zhang & Haolin Zhong & Xuanyi Li & Yujie Wu & Jun Ju & Bo Liu & Zhenyu Zhang & Hai Yan & Yizheng Wang & Kun Song & Sheng-Tao Hou, 2022. "Hypothermia evoked by stimulation of medial preoptic nucleus protects the brain in a mouse model of ischaemia," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Shaowen Qian & Sumei Yan & Ruiqi Pang & Jing Zhang & Kai Liu & Zhiyue Shi & Zhaoqun Wang & Penghui Chen & Yanjie Zhang & Tiantian Luo & Xianli Hu & Ying Xiong & Yi Zhou, 2022. "A temperature-regulated circuit for feeding behavior," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Shuancheng Ren & Cai Zhang & Faguo Yue & Jinxiang Tang & Wei Zhang & Yue Zheng & Yuanyuan Fang & Na Wang & Zhenbo Song & Zehui Zhang & Xiaolong Zhang & Han Qin & Yaling Wang & Jianxia Xia & Chenggang , 2024. "A midbrain GABAergic circuit constrains wakefulness in a mouse model of stress," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Wen Z. Yang & Hengchang Xie & Xiaosa Du & Qian Zhou & Yan Xiao & Zhengdong Zhao & Xiaoning Jia & Jianhui Xu & Wen Zhang & Shuang Cai & Zhangjie Li & Xin Fu & Rong Hua & Junhao Cai & Shuang Chang & Jin, 2023. "A parabrachial-hypothalamic parallel circuit governs cold defense in mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Aika Iwama & Ryoji Kise & Hiroaki Akasaka & Fumiya K. Sano & Hidetaka S. Oshima & Asuka Inoue & Wataru Shihoya & Osamu Nureki, 2024. "Structure and dynamics of the pyroglutamylated RF-amide peptide QRFP receptor GPR103," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Oliver Tejero & Filip Pamula & Mitsumasa Koyanagi & Takashi Nagata & Pavel Afanasyev & Ishita Das & Xavier Deupi & Mordechai Sheves & Akihisa Terakita & Gebhard F. X. Schertler & Matthew J. Rodrigues , 2024. "Active state structures of a bistable visual opsin bound to G proteins," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Roberto Luca & Stefano Nardone & Kevin P. Grace & Anne Venner & Michela Cristofolini & Sathyajit S. Bandaru & Lauren T. Sohn & Dong Kong & Takatoshi Mochizuki & Bianca Viberti & Lin Zhu & Antonino Zit, 2022. "Orexin neurons inhibit sleep to promote arousal," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Can Tao & Guang-Wei Zhang & Wen-Jian Sun & Junxiang J. Huang & Li I. Zhang & Huizhong Whit Tao, 2024. "Excitation-inhibition imbalance in medial preoptic area circuits underlies chronic stress-induced depression-like states," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Ahmed Wagdi & Daniela Malan & Udhayabhaskar Sathyanarayanan & Janosch S. Beauchamp & Markus Vogt & David Zipf & Thomas Beiert & Berivan Mansuroglu & Vanessa Dusend & Mark Meininghaus & Linn Schneider , 2022. "Selective optogenetic control of Gq signaling using human Neuropsin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    10. Sasa Teng & Fenghua Zhen & Li Wang & Jose Canovas Schalchli & Jane Simko & Xinyue Chen & Hao Jin & Christopher D. Makinson & Yueqing Peng, 2022. "Control of non-REM sleep by ventrolateral medulla glutamatergic neurons projecting to the preoptic area," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Masafumi Tsurutani & Teppei Goto & Mitsue Hagihara & Satsuki Irie & Kazunari Miyamichi, 2024. "Selective vulnerability of parvocellular oxytocin neurons in social dysfunction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Tadataka Tsuji & Vladimir Tolstikov & Yang Zhang & Tian Lian Huang & Henrique Camara & Meghan Halpin & Niven R. Narain & King-Wai Yau & Matthew D. Lynes & Michael A. Kiebish & Yu-Hua Tseng, 2024. "Light-responsive adipose-hypothalamus axis controls metabolic regulation," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41435-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.