IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41380-w.html
   My bibliography  Save this article

Neurofunctional underpinnings of individual differences in visual episodic memory performance

Author

Listed:
  • Léonie Geissmann

    (University of Basel
    University of Basel)

  • David Coynel

    (University of Basel
    University of Basel)

  • Andreas Papassotiropoulos

    (University of Basel
    University of Basel
    University Psychiatric Clinics, University of Basel)

  • Dominique J. F. Quervain

    (University of Basel
    University of Basel
    University Psychiatric Clinics, University of Basel)

Abstract

Episodic memory, the ability to consciously recollect information and its context, varies substantially among individuals. While prior fMRI studies have identified certain brain regions linked to successful memory encoding at a group level, their role in explaining individual memory differences remains largely unexplored. Here, we analyze fMRI data of 1,498 adults participating in a picture encoding task in a single MRI scanner. We find that individual differences in responsivity of the hippocampus, orbitofrontal cortex, and posterior cingulate cortex account for individual variability in episodic memory performance. While these regions also emerge in our group-level analysis, other regions, predominantly within the lateral occipital cortex, are related to successful memory encoding but not to individual memory variation. Furthermore, our network-based approach reveals a link between the responsivity of nine functional connectivity networks and individual memory variability. Our work provides insights into the neurofunctional correlates of individual differences in visual episodic memory performance.

Suggested Citation

  • Léonie Geissmann & David Coynel & Andreas Papassotiropoulos & Dominique J. F. Quervain, 2023. "Neurofunctional underpinnings of individual differences in visual episodic memory performance," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41380-w
    DOI: 10.1038/s41467-023-41380-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41380-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41380-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Whitcher, Brandon & Schmid, Volker J. & Thorton, Andrew, 2011. "Working with the DICOM and NIfTI Data Standards in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 44(i06).
    2. Lindsey D. Salay & Nao Ishiko & Andrew D. Huberman, 2018. "A midline thalamic circuit determines reactions to visual threat," Nature, Nature, vol. 557(7704), pages 183-189, May.
    3. Scott Marek & Brenden Tervo-Clemmens & Finnegan J. Calabro & David F. Montez & Benjamin P. Kay & Alexander S. Hatoum & Meghan Rose Donohue & William Foran & Ryland L. Miller & Timothy J. Hendrickson &, 2022. "Reproducible brain-wide association studies require thousands of individuals," Nature, Nature, vol. 603(7902), pages 654-660, March.
    4. Michael B Kranz & Michelle W Voss & Gillian E Cooke & Sarah E Banducci & Agnieszka Z Burzynska & Arthur F Kramer, 2018. "The cortical structure of functional networks associated with age-related cognitive abilities in older adults," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-26, September.
    5. Tomonori Takeuchi & Adrian J. Duszkiewicz & Alex Sonneborn & Patrick A. Spooner & Miwako Yamasaki & Masahiko Watanabe & Caroline C. Smith & Guillén Fernández & Karl Deisseroth & Robert W. Greene & Ric, 2016. "Locus coeruleus and dopaminergic consolidation of everyday memory," Nature, Nature, vol. 537(7620), pages 357-362, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bob Bramson & Sjoerd Meijer & Annelies Nuland & Ivan Toni & Karin Roelofs, 2023. "Anxious individuals shift emotion control from lateral frontal pole to dorsolateral prefrontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Matthew Rosenblatt & Link Tejavibulya & Rongtao Jiang & Stephanie Noble & Dustin Scheinost, 2024. "Data leakage inflates prediction performance in connectome-based machine learning models," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. repec:jss:jstsof:44:i09 is not listed on IDEAS
    4. Joana Mendes Duarte & Robin Nguyen & Marios Kyprou & Kaizhen Li & Anastasija Milentijevic & Carlo Cerquetella & Thomas Forro & Stéphane Ciocchi, 2024. "Hippocampal contextualization of social rewards in mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. David J. Whiteside & Negin Holland & Kamen A. Tsvetanov & Elijah Mak & Maura Malpetti & George Savulich & P. Simon Jones & Michelle Naessens & Matthew A. Rouse & Tim D. Fryer & Young T. Hong & Frankli, 2023. "Synaptic density affects clinical severity via network dysfunction in syndromes associated with frontotemporal lobar degeneration," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Florent Meyniel, 2020. "Brain dynamics for confidence-weighted learning," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-27, June.
    7. Xiaocen Fan & Jiachen Song & Chaonan Ma & Yanbo Lv & Feifei Wang & Lan Ma & Xing Liu, 2022. "Noradrenergic signaling mediates cortical early tagging and storage of remote memory," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Dardo Tomasi & Nora D. Volkow, 2024. "Associations between handedness and brain functional connectivity patterns in children," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. repec:jss:jstsof:44:i11 is not listed on IDEAS
    10. Cardona Jiménez, Johnatan & de B. Pereira, Carlos A., 2021. "Assessing dynamic effects on a Bayesian matrix-variate dynamic linear model: An application to task-based fMRI data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    11. Golia Shafiei & Ben D. Fulcher & Bradley Voytek & Theodore D. Satterthwaite & Sylvain Baillet & Bratislav Misic, 2023. "Neurophysiological signatures of cortical micro-architecture," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Valentina Pacella & Victor Nozais & Lia Talozzi & Majd Abdallah & Demian Wassermann & Stephanie J. Forkel & Michel Thiebaut de Schotten, 2024. "The morphospace of the brain-cognition organisation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Zurrin, Riley & Wong, Samantha Tze Sum & Roes, Meighen M. & Percival, Chantal M. & Chinchani, Abhijit & Arreaza, Leo & Kusi, Mavis & Momeni, Ava & Rasheed, Maiya & Mo, Zhaoyi & Goghari, Vina M. & Wood, 2024. "Functional brain networks involved in the Raven's standard progressive matrices task and their relation to theories of fluid intelligence," Intelligence, Elsevier, vol. 103(C).
    14. Mohamed Abdelhack & Peter Zhukovsky & Milos Milic & Shreyas Harita & Michael Wainberg & Shreejoy J. Tripathy & John D. Griffiths & Sean L. Hill & Daniel Felsky, 2023. "Opposing brain signatures of sleep in task-based and resting-state conditions," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Nathan Bénac & G. Ezequiel Saraceno & Corey Butler & Nahoko Kuga & Yuya Nishimura & Taiki Yokoi & Ping Su & Takuya Sasaki & Mar Petit-Pedrol & Rémi Galland & Vincent Studer & Fang Liu & Yuji Ikegaya &, 2024. "Non-canonical interplay between glutamatergic NMDA and dopamine receptors shapes synaptogenesis," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    16. Fares J. P. Sayegh & Lionel Mouledous & Catherine Macri & Juliana Pi Macedo & Camille Lejards & Claire Rampon & Laure Verret & Lionel Dahan, 2024. "Ventral tegmental area dopamine projections to the hippocampus trigger long-term potentiation and contextual learning," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Andrew D. Grotzinger & Travis T. Mallard & Zhaowen Liu & Jakob Seidlitz & Tian Ge & Jordan W. Smoller, 2023. "Multivariate genomic architecture of cortical thickness and surface area at multiple levels of analysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Meike D. Hettwer & Lena Dorfschmidt & Lara M. C. Puhlmann & Linda M. Jacob & Casey Paquola & Richard A. I. Bethlehem & Edward T. Bullmore & Simon B. Eickhoff & Sofie L. Valk, 2024. "Longitudinal variation in resilient psychosocial functioning is associated with ongoing cortical myelination and functional reorganization during adolescence," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Yanjun Sun & Lisa M. Giocomo, 2022. "Neural circuit dynamics of drug-context associative learning in the mouse hippocampus," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    20. Daria Antonenko & Anna Elisabeth Fromm & Friederike Thams & Ulrike Grittner & Marcus Meinzer & Agnes Flöel, 2023. "Microstructural and functional plasticity following repeated brain stimulation during cognitive training in older adults," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    21. repec:jss:jstsof:44:i12 is not listed on IDEAS
    22. Jianzhong Chen & Angela Tam & Valeria Kebets & Csaba Orban & Leon Qi Rong Ooi & Christopher L. Asplund & Scott Marek & Nico U. F. Dosenbach & Simon B. Eickhoff & Danilo Bzdok & Avram J. Holmes & B. T., 2022. "Shared and unique brain network features predict cognitive, personality, and mental health scores in the ABCD study," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    23. Jia-Hou Poh & Mai-Anh T. Vu & Jessica K. Stanek & Abigail Hsiung & Tobias Egner & R. Alison Adcock, 2022. "Hippocampal convergence during anticipatory midbrain activation promotes subsequent memory formation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41380-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.