IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41321-7.html
   My bibliography  Save this article

A global-temporal analysis on Phytophthora sojae resistance-gene efficacy

Author

Listed:
  • Austin G. McCoy

    (Michigan State University)

  • Richard R. Belanger

    (Université Laval)

  • Carl A. Bradley

    (University of Kentucky)

  • Daniel G. Cerritos-Garcia

    (University of Connecticut)

  • Vinicius C. Garnica

    (North Carolina State University)

  • Loren J. Giesler

    (University of Nebraska-Lincoln)

  • Pablo E. Grijalba

    (Universidad de Buenos Aires)

  • Eduardo Guillin

    (Instituto Nacional de Tecnologia Agropecuaria)

  • Maria A. Henriquez

    (Agriculture and Agri-Food Canada)

  • Yong Min Kim

    (Agriculture and Agri-Food Canada)

  • Dean K. Malvick

    (University of Minnesota)

  • Rashelle L. Matthiesen

    (Iowa State University)

  • Santiago X. Mideros

    (University of Illinois at Urbana-Champaign)

  • Zachary A. Noel

    (Auburn University)

  • Alison E. Robertson

    (Iowa State University)

  • Mitchell G. Roth

    (The Ohio State University-Wooster)

  • Clarice L. Schmidt

    (Iowa State University)

  • Damon L. Smith

    (University of Wisconsin-Madison)

  • Adam H. Sparks

    (Department of Primary Industries and Regional Development
    University of Southern Queensland)

  • Darcy E. P. Telenko

    (Purdue University)

  • Vanessa Tremblay

    (Université Laval)

  • Owen Wally

    (Agriculture and Agri-Food Canada)

  • Martin I. Chilvers

    (Michigan State University)

Abstract

Plant disease resistance genes are widely used in agriculture to reduce disease outbreaks and epidemics and ensure global food security. In soybean, Rps (Resistance to Phytophthora sojae) genes are used to manage Phytophthora sojae, a major oomycete pathogen that causes Phytophthora stem and root rot (PRR) worldwide. This study aims to identify temporal changes in P. sojae pathotype complexity, diversity, and Rps gene efficacy. Pathotype data was collected from 5121 isolates of P. sojae, derived from 29 surveys conducted between 1990 and 2019 across the United States, Argentina, Canada, and China. This systematic review shows a loss of efficacy of specific Rps genes utilized for disease management and a significant increase in the pathotype diversity of isolates over time. This study finds that the most widely deployed Rps genes used to manage PRR globally, Rps1a, Rps1c and Rps1k, are no longer effective for PRR management in the United States, Argentina, and Canada. This systematic review emphasizes the need to widely introduce new sources of resistance to P. sojae, such as Rps3a, Rps6, or Rps11, into commercial cultivars to effectively manage PRR going forward.

Suggested Citation

  • Austin G. McCoy & Richard R. Belanger & Carl A. Bradley & Daniel G. Cerritos-Garcia & Vinicius C. Garnica & Loren J. Giesler & Pablo E. Grijalba & Eduardo Guillin & Maria A. Henriquez & Yong Min Kim &, 2023. "A global-temporal analysis on Phytophthora sojae resistance-gene efficacy," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41321-7
    DOI: 10.1038/s41467-023-41321-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41321-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41321-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. Dreiseitl, 2003. "Adaptation of Blumeria graminis f.sp. hordei to barley resistance genes in the Czech Republic in 1971-2000," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 49(6), pages 241-248.
    2. Dinah Qutob & B. Patrick Chapman & Mark Gijzen, 2013. "Transgenerational gene silencing causes gain of virulence in a plant pathogen," Nature Communications, Nature, vol. 4(1), pages 1-6, June.
    3. Weidong Wang & Liyang Chen & Kevin Fengler & Joy Bolar & Victor Llaca & Xutong Wang & Chancelor B. Clark & Tomara J. Fleury & Jon Myrvold & David Oneal & Maria Magdalena Dyk & Ashley Hudson & Jesse Mu, 2021. "A giant NLR gene confers broad-spectrum resistance to Phytophthora sojae in soybean," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Goutam Konapala & Ashok K. Mishra & Yoshihide Wada & Michael E. Mann, 2020. "Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zsuzsanna Farkas & Angéla Anda & Gyula Vida & Ottó Veisz & Balázs Varga, 2021. "CO 2 Responses of Winter Wheat, Barley and Oat Cultivars under Optimum and Limited Irrigation," Sustainability, MDPI, vol. 13(17), pages 1-23, September.
    2. Wu, Genan & Lu, Xinchen & Zhao, Wei & Cao, Ruochen & Xie, Wenqi & Wang, Liyun & Wang, Qiuhong & Song, Jiexuan & Gao, Shaobo & Li, Shenggong & Hu, Zhongmin, 2023. "The increasing contribution of greening to the terrestrial evapotranspiration in China," Ecological Modelling, Elsevier, vol. 477(C).
    3. Tang, Darrell W.S. & Bartholomeus, Ruud P. & Ritsema, Coen J., 2024. "Wastewater irrigation beneath the water table: analytical model of crop contamination risks," Agricultural Water Management, Elsevier, vol. 298(C).
    4. Sourav Mukherjee & Ashok Kumar Mishra & Jakob Zscheischler & Dara Entekhabi, 2023. "Interaction between dry and hot extremes at a global scale using a cascade modeling framework," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Sofia Fuente & Eleanor Jennings & John D. Lenters & Piet Verburg & Georgiy Kirillin & Tom Shatwell & Raoul-Marie Couture & Marianne Côté & C. Love Råman Vinnå & R. Iestyn Woolway, 2024. "Increasing warm-season evaporation rates across European lakes under climate change," Climatic Change, Springer, vol. 177(12), pages 1-18, December.
    6. Ralph Trancoso & Jozef Syktus & Richard P. Allan & Jacky Croke & Ove Hoegh-Guldberg & Robin Chadwick, 2024. "Significantly wetter or drier future conditions for one to two thirds of the world’s population," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Victor Funso Agunbiade & Olubukola Oluranti Babalola, 2023. "Endophytic and rhizobacteria functionalities in alleviating drought stress in maize plants," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 59(1), pages 1-18.
    8. Yu, Xingjiao & Qian, Long & Wang, Wen’e & Hu, Xiaotao & Dong, Jianhua & Pi, Yingying & Fan, Kai, 2023. "Comprehensive evaluation of terrestrial evapotranspiration from different models under extreme condition over conterminous United States," Agricultural Water Management, Elsevier, vol. 289(C).
    9. Dardonville, Manon & Bockstaller, Christian & Villerd, Jean & Therond, Olivier, 2022. "Resilience of agricultural systems: biodiversity-based systems are stable, while intensified ones are resistant and high-yielding," Agricultural Systems, Elsevier, vol. 197(C).
    10. Liu, Wenna & Chen, Hongsong & Zou, Qiaoyun & Nie, Yunpeng, 2021. "Divergent root water uptake depth and coordinated hydraulic traits among typical karst plantations of subtropical China: Implication for plant water adaptation under precipitation changes," Agricultural Water Management, Elsevier, vol. 249(C).
    11. Batsuren Dorjsuren & Nyamdavaa Batsaikhan & Denghua Yan & Otgonbayar Yadamjav & Sonomdagva Chonokhuu & Altanbold Enkhbold & Tianlin Qin & Baisha Weng & Wuxia Bi & Otgonbayar Demberel & Tsasanchimeg Bo, 2021. "Study on Relationship of Land Cover Changes and Ecohydrological Processes of the Tuul River Basin," Sustainability, MDPI, vol. 13(3), pages 1-16, January.
    12. Egerer, Sabine & Puente, Andrea Fajardo & Peichl, Michael & Rakovec, Oldrich & Samaniego, Luis & Schneider, Uwe A., 2023. "Limited potential of irrigation to prevent potato yield losses in Germany under climate change," Agricultural Systems, Elsevier, vol. 207(C).
    13. Sandra Ricart & Rubén A. Villar-Navascués & Maria Hernández-Hernández & Antonio M. Rico-Amorós & Jorge Olcina-Cantos & Enrique Moltó-Mantero, 2021. "Extending Natural Limits to Address Water Scarcity? The Role of Non-Conventional Water Fluxes in Climate Change Adaptation Capacity: A Review," Sustainability, MDPI, vol. 13(5), pages 1-31, February.
    14. Listiana, Indah & Nurmayasari, Indah & Bursan, Rinaldi & Sukmayanto, Muher & Yanfika, Helvi & Widyastuti, R.A.D, 2021. "Farmers' Capacity and Rice Productivity in Climate Change Adaption in Central Lampung Regency, Indonesia," Asian Journal of Agriculture and Rural Development, Asian Economic and Social Society (AESS), vol. 11(04), January.
    15. Si Tang & Xueyu Cheng & Yaqing Liu & Lu Liu & Dai Liu & Qi Yan & Jianming Zhu & Jin Zhou & Yuyang Jiang & Katrin Hammerschmidt & Zhonghua Cai, 2024. "A unicellular cyanobacterium relies on sodium energetics to fix N2," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Satyendra Kumar & Bhaskar Narjary & Vivekanand & Adlul Islam & R. K. Yadav & S. K. Kamra, 2022. "Modeling climate change impact on groundwater and adaptation strategies for its sustainable management in the Karnal district of Northwest India," Climatic Change, Springer, vol. 173(1), pages 1-30, July.
    17. Bakhtmina Zia & Muhammad Rafiq & Shahab E. Saqib & Muhammad Atiq, 2022. "Agricultural Market Competitiveness in the Context of Climate Change: A Systematic Review," Sustainability, MDPI, vol. 14(7), pages 1-22, March.
    18. Akash Koppa & Dominik Rains & Petra Hulsman & Rafael Poyatos & Diego G. Miralles, 2022. "A deep learning-based hybrid model of global terrestrial evaporation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Ayman Alhejji & Alban Kuriqi & Jakub Jurasz & Farag K. Abo-Elyousr, 2021. "Energy Harvesting and Water Saving in Arid Regions via Solar PV Accommodation in Irrigation Canals," Energies, MDPI, vol. 14(9), pages 1-24, May.
    20. Shubham M. Jibhakate & P. V. Timbadiya & P. L. Patel, 2023. "Flood hazard assessment for the coastal urban floodplain using 1D/2D coupled hydrodynamic model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 1557-1590, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41321-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.