IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29543-7.html
   My bibliography  Save this article

A deep learning-based hybrid model of global terrestrial evaporation

Author

Listed:
  • Akash Koppa

    (Ghent University)

  • Dominik Rains

    (Ghent University)

  • Petra Hulsman

    (Ghent University)

  • Rafael Poyatos

    (CREAF
    Universitat Autònoma de Barcelona)

  • Diego G. Miralles

    (Ghent University)

Abstract

Terrestrial evaporation (E) is a key climatic variable that is controlled by a plethora of environmental factors. The constraints that modulate the evaporation from plant leaves (or transpiration, Et) are particularly complex, yet are often assumed to interact linearly in global models due to our limited knowledge based on local studies. Here, we train deep learning algorithms using eddy covariance and sap flow data together with satellite observations, aiming to model transpiration stress (St), i.e., the reduction of Et from its theoretical maximum. Then, we embed the new St formulation within a process-based model of E to yield a global hybrid E model. In this hybrid model, the St formulation is bidirectionally coupled to the host model at daily timescales. Comparisons against in situ data and satellite-based proxies demonstrate an enhanced ability to estimate St and E globally. The proposed framework may be extended to improve the estimation of E in Earth System Models and enhance our understanding of this crucial climatic variable.

Suggested Citation

  • Akash Koppa & Dominik Rains & Petra Hulsman & Rafael Poyatos & Diego G. Miralles, 2022. "A deep learning-based hybrid model of global terrestrial evaporation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29543-7
    DOI: 10.1038/s41467-022-29543-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29543-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29543-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chujie Tian & Jian Ma & Chunhong Zhang & Panpan Zhan, 2018. "A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network," Energies, MDPI, vol. 11(12), pages 1-13, December.
    2. Christopher R. Schwalm & William R. L. Anderegg & Anna M. Michalak & Joshua B. Fisher & Franco Biondi & George Koch & Marcy Litvak & Kiona Ogle & John D. Shaw & Adam Wolf & Deborah N. Huntzinger & Kev, 2017. "Global patterns of drought recovery," Nature, Nature, vol. 548(7666), pages 202-205, August.
    3. Martin Jung & Markus Reichstein & Philippe Ciais & Sonia I. Seneviratne & Justin Sheffield & Michael L. Goulden & Gordon Bonan & Alessandro Cescatti & Jiquan Chen & Richard de Jeu & A. Johannes Dolman, 2010. "Recent decline in the global land evapotranspiration trend due to limited moisture supply," Nature, Nature, vol. 467(7318), pages 951-954, October.
    4. P. C. D. Milly & K. A. Dunne & A. V. Vecchia, 2005. "Global pattern of trends in streamflow and water availability in a changing climate," Nature, Nature, vol. 438(7066), pages 347-350, November.
    5. Markus Reichstein & Gustau Camps-Valls & Bjorn Stevens & Martin Jung & Joachim Denzler & Nuno Carvalhais & Prabhat, 2019. "Deep learning and process understanding for data-driven Earth system science," Nature, Nature, vol. 566(7743), pages 195-204, February.
    6. Tomislav Hengl & Jorge Mendes de Jesus & Gerard B M Heuvelink & Maria Ruiperez Gonzalez & Milan Kilibarda & Aleksandar Blagotić & Wei Shangguan & Marvin N Wright & Xiaoyuan Geng & Bernhard Bauer-Marsc, 2017. "SoilGrids250m: Global gridded soil information based on machine learning," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-40, February.
    7. Goutam Konapala & Ashok K. Mishra & Yoshihide Wada & Michael E. Mann, 2020. "Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Wenbin & Yu, Xiaoyu & Wei, Jiaxing & Lv, Aifeng, 2024. "Surface flux equilibrium estimates of evaporative fraction and evapotranspiration at global scale: Accuracy evaluation and performance comparison," Agricultural Water Management, Elsevier, vol. 291(C).
    2. Jiang, Xiaoman & Wang, Yuntao & A., Yinglan & Wang, Guoqiang & Zhang, Xiaojing & Ma, Guangwen & Duan, Limin & Liu, Kai, 2024. "Optimizing actual evapotranspiration simulation to identify evapotranspiration partitioning variations: A fusion of physical processes and machine learning techniques," Agricultural Water Management, Elsevier, vol. 295(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Jiaojiao & Wang, Weizhen & Xu, Feinan & Wang, Shengtang, 2024. "Evaluating the ability of deep learning on actual daily evapotranspiration estimation over the heterogeneous surfaces," Agricultural Water Management, Elsevier, vol. 291(C).
    2. Wu, Genan & Lu, Xinchen & Zhao, Wei & Cao, Ruochen & Xie, Wenqi & Wang, Liyun & Wang, Qiuhong & Song, Jiexuan & Gao, Shaobo & Li, Shenggong & Hu, Zhongmin, 2023. "The increasing contribution of greening to the terrestrial evapotranspiration in China," Ecological Modelling, Elsevier, vol. 477(C).
    3. Yu, Xingjiao & Qian, Long & Wang, Wen’e & Hu, Xiaotao & Dong, Jianhua & Pi, Yingying & Fan, Kai, 2023. "Comprehensive evaluation of terrestrial evapotranspiration from different models under extreme condition over conterminous United States," Agricultural Water Management, Elsevier, vol. 289(C).
    4. Feng, Jiaojiao & Wang, Weizhen & Che, Tao & Xu, Feinan, 2023. "Performance of the improved two-source energy balance model for estimating evapotranspiration over the heterogeneous surface," Agricultural Water Management, Elsevier, vol. 278(C).
    5. J. C. Ryan & L. C. Smith & S. W. Cooley & B. Pearson & N. Wever & E. Keenan & J. T. M. Lenaerts, 2022. "Decreasing surface albedo signifies a growing importance of clouds for Greenland Ice Sheet meltwater production," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Kałuża, Tomasz & Hämmerling, Mateusz & Zawadzki, Paweł & Czekała, Wojciech & Kasperek, Robert & Sojka, Mariusz & Mokwa, Marian & Ptak, Mariusz & Szkudlarek, Arkadiusz & Czechlowski, Mirosław & Dach, J, 2022. "The hydropower sector in Poland: Barriers and the outlook for the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    7. T. R. Sreeshna & P. Athira & B. Soundharajan, 2024. "Impact of Climate Change on Regional Water Availability and Demand for Agricultural Production: Application of Water Footprint Concept," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(10), pages 3785-3817, August.
    8. Md. Nazmul Hasan & Rafia Nishat Toma & Abdullah-Al Nahid & M M Manjurul Islam & Jong-Myon Kim, 2019. "Electricity Theft Detection in Smart Grid Systems: A CNN-LSTM Based Approach," Energies, MDPI, vol. 12(17), pages 1-18, August.
    9. Nina Tiel & Fabian Fopp & Philipp Brun & Johan Hoogen & Dirk Nikolaus Karger & Cecilia M. Casadei & Lisha Lyu & Devis Tuia & Niklaus E. Zimmermann & Thomas W. Crowther & Loïc Pellissier, 2024. "Regional uniqueness of tree species composition and response to forest loss and climate change," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. John Quiggin, 2010. "Agriculture and global climate stabilization: a public good analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 41(s1), pages 121-132, November.
    11. Elliott R. Dossou-Yovo & Sander J. Zwart & Amadou Kouyaté & Ibrahima Ouédraogo & Oladele Bakare, 2018. "Predictors of Drought in Inland Valley Landscapes and Enabling Factors for Rice Farmers’ Mitigation Measures in the Sudan-Sahel Zone," Sustainability, MDPI, vol. 11(1), pages 1-17, December.
    12. Linghua Qiu & Junhao He & Chao Yue & Philippe Ciais & Chunmiao Zheng, 2024. "Substantial terrestrial carbon emissions from global expansion of impervious surface area," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Tao, Hai & Diop, Lamine & Bodian, Ansoumana & Djaman, Koffi & Ndiaye, Papa Malick & Yaseen, Zaher Mundher, 2018. "Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso," Agricultural Water Management, Elsevier, vol. 208(C), pages 140-151.
    14. Yanqun Ren & Jinping Liu & Patrick Willems & Tie Liu & Quoc Bao Pham, 2023. "Detection and Assessment of Changing Drought Events in China in the Context of Climate Change Based on the Intensity–Area–Duration Algorithm," Land, MDPI, vol. 12(10), pages 1-18, September.
    15. Fei Teng & Yafei Song & Xinpeng Guo, 2021. "Attention-TCN-BiGRU: An Air Target Combat Intention Recognition Model," Mathematics, MDPI, vol. 9(19), pages 1-21, September.
    16. Licheng Liu & Wang Zhou & Kaiyu Guan & Bin Peng & Shaoming Xu & Jinyun Tang & Qing Zhu & Jessica Till & Xiaowei Jia & Chongya Jiang & Sheng Wang & Ziqi Qin & Hui Kong & Robert Grant & Symon Mezbahuddi, 2024. "Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. Huang, Yawen & Tao, Bo & Lal, Rattan & Lorenz, Klaus & Jacinthe, Pierre-Andre & Shrestha, Raj K. & Bai, Xiongxiong & Singh, Maninder P. & Lindsey, Laura E. & Ren, Wei, 2023. "A global synthesis of biochar's sustainability in climate-smart agriculture - Evidence from field and laboratory experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    18. Mark A. Anthony & Leho Tedersoo & Bruno Vos & Luc Croisé & Henning Meesenburg & Markus Wagner & Henning Andreae & Frank Jacob & Paweł Lech & Anna Kowalska & Martin Greve & Genoveva Popova & Beat Frey , 2024. "Fungal community composition predicts forest carbon storage at a continental scale," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Rozenstein, Offer & Fine, Lior & Malachy, Nitzan & Richard, Antoine & Pradalier, Cedric & Tanny, Josef, 2023. "Data-driven estimation of actual evapotranspiration to support irrigation management: Testing two novel methods based on an unoccupied aerial vehicle and an artificial neural network," Agricultural Water Management, Elsevier, vol. 283(C).
    20. Tong Qiu & Robert Andrus & Marie-Claire Aravena & Davide Ascoli & Yves Bergeron & Roberta Berretti & Daniel Berveiller & Michal Bogdziewicz & Thomas Boivin & Raul Bonal & Don C. Bragg & Thomas Caignar, 2022. "Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29543-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.