IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40973-9.html
   My bibliography  Save this article

A cage-on-MOF strategy to coordinatively functionalize mesoporous MOFs for manipulating selectivity in adsorption and catalysis

Author

Listed:
  • Yu Liang

    (Hunan University
    Innovation Institute of Industrial Design and Machine Intelligence Quanzhou-Hunan University)

  • Xiaoxin Yang

    (Hunan University
    Hunan University)

  • Xiaoyu Wang

    (Nanjing University)

  • Zong-Jie Guan

    (Hunan University
    Innovation Institute of Industrial Design and Machine Intelligence Quanzhou-Hunan University)

  • Hang Xing

    (Hunan University
    Hunan University)

  • Yu Fang

    (Hunan University
    Innovation Institute of Industrial Design and Machine Intelligence Quanzhou-Hunan University)

Abstract

Functionalizing porous materials with capping agents generates hybrid materials with enhanced properties, while the challenge is how to improve the selectivity and maintain the porosity of the parent framework. Herein, we developed a “Cage-on-MOF” strategy to tune the recognition and catalytic properties of MOFs without impairing their porosity. Two types of porous coordination cages (PCCs) of opposite charges containing secondary binding groups were developed to coordinatively functionalize two distinct porous MOFs, namely MOF@PCC nanocomposites. We demonstrated that the surface-capped PCCs can act as “modulators” to effectively tune the surface charge, stability, and adsorption behavior of different host MOF particles. More importantly, the MOF@PCCs can serve as selective heterogeneous catalysts for condensation reactions to achieve reversed product selectivity and excellent recyclability. This work sets the foundation for using molecular cages as porous surface-capping agents to functionalize and manipulate another porous material, without affecting the intrinsic properties of the parent framework.

Suggested Citation

  • Yu Liang & Xiaoxin Yang & Xiaoyu Wang & Zong-Jie Guan & Hang Xing & Yu Fang, 2023. "A cage-on-MOF strategy to coordinatively functionalize mesoporous MOFs for manipulating selectivity in adsorption and catalysis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40973-9
    DOI: 10.1038/s41467-023-40973-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40973-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40973-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dawei Feng & Tian-Fu Liu & Jie Su & Mathieu Bosch & Zhangwen Wei & Wei Wan & Daqiang Yuan & Ying-Pin Chen & Xuan Wang & Kecheng Wang & Xizhen Lian & Zhi-Yuan Gu & Jihye Park & Xiaodong Zou & Hong-Cai , 2015. "Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
    2. Jung Soo Seo & Dongmok Whang & Hyoyoung Lee & Sung Im Jun & Jinho Oh & Young Jin Jeon & Kimoon Kim, 2000. "A homochiral metal–organic porous material for enantioselective separation and catalysis," Nature, Nature, vol. 404(6781), pages 982-986, April.
    3. Bogdan Olenyuk & Jeffery A. Whiteford & Andreas Fechtenkötter & Peter J. Stang, 1999. "Self-assembly of nanoscale cuboctahedra by coordination chemistry," Nature, Nature, vol. 398(6730), pages 796-799, April.
    4. Simon Krause & Volodymyr Bon & Irena Senkovska & Ulrich Stoeck & Dirk Wallacher & Daniel M. Többens & Stefan Zander & Renjith S. Pillai & Guillaume Maurin & François-Xavier Coudert & Stefan Kaskel, 2016. "A pressure-amplifying framework material with negative gas adsorption transitions," Nature, Nature, vol. 532(7599), pages 348-352, April.
    5. Jun Wang & Yan Zhang & Yun Su & Xing Liu & Peixin Zhang & Rui-Biao Lin & Shixia Chen & Qiang Deng & Zheling Zeng & Shuguang Deng & Banglin Chen, 2022. "Fine pore engineering in a series of isoreticular metal-organic frameworks for efficient C2H2/CO2 separation," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shinpei Kusaka & Yuh Itoh & Akihiro Hori & Junichi Usuba & Jenny Pirillo & Yuh Hijikata & Yunsheng Ma & Ryotaro Matsuda, 2024. "Adsorptive-dissolution of O2 into the potential nanospace of a densely fluorinated metal-organic framework," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Yangyang Xu & Tu Sun & Tengwu Zeng & Xiangyu Zhang & Xuan Yao & Shan Liu & Zhaolin Shi & Wen Wen & Yingbo Zhao & Shan Jiang & Yanhang Ma & Yue-Biao Zhang, 2023. "Symmetry-breaking dynamics in a tautomeric 3D covalent organic framework," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Peixin Zhang & Lifeng Yang & Xing Liu & Jun Wang & Xian Suo & Liyuan Chen & Xili Cui & Huabin Xing, 2022. "Ultramicroporous material based parallel and extended paraffin nano-trap for benchmark olefin purification," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Qiong Chen & Zhaoyong Li & Ye Lei & Yixin Chen & Hua Tang & Guangcheng Wu & Bin Sun & Yuxi Wei & Tianyu Jiao & Songna Zhang & Feihe Huang & Linjun Wang & Hao Li, 2023. "The sharp structural switch of covalent cages mediated by subtle variation of directing groups," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Lei Wei & Tu Sun & Zhaolin Shi & Zezhao Xu & Wen Wen & Shan Jiang & Yingbo Zhao & Yanhang Ma & Yue-Biao Zhang, 2022. "Guest-adaptive molecular sensing in a dynamic 3D covalent organic framework," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Simon Krause & Jack D. Evans & Volodymyr Bon & Stefano Crespi & Wojciech Danowski & Wesley R. Browne & Sebastian Ehrling & Francesco Walenszus & Dirk Wallacher & Nico Grimm & Daniel M. Többens & Manfr, 2022. "Cooperative light-induced breathing of soft porous crystals via azobenzene buckling," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Jin-Peng Xue & Yang Hu & Bo Zhao & Zhi-Kun Liu & Jing Xie & Zi-Shuo Yao & Jun Tao, 2022. "A spin-crossover framework endowed with pore-adjustable behavior by slow structural dynamics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Davide Caprini & Francesco Battista & Paweł Zajdel & Giovanni Di Muccio & Carlo Guardiani & Benjamin Trump & Marcus Carter & Andrey A. Yakovenko & Eder Amayuelas & Luis Bartolomé & Simone Meloni & Yar, 2024. "Bubbles enable volumetric negative compressibility in metastable elastocapillary systems," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Junhui Liu & Hanting Xiong & Hua Shuai & Xing Liu & Yong Peng & Lingmin Wang & Pengxiang Wang & Zhiwei Zhao & Zhenning Deng & Zhenyu Zhou & Jingwen Chen & Shixia Chen & Zheling Zeng & Shuguang Deng & , 2024. "Molecular sieving of iso-butene from C4 olefins with simultaneous high 1,3-butadiene and n-butene uptakes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Francesco Walenszus & Volodymyr Bon & Jack D. Evans & Simon Krause & Jürgen Getzschmann & Stefan Kaskel & Muslim Dvoyashkin, 2023. "On the role of history-dependent adsorbate distribution and metastable states in switchable mesoporous metal-organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Meizhen Gao & Rui-Kang Huang & Bin Zheng & Pengfei Wang & Qi Shi & Wei-Xiong Zhang & Jinxiang Dong, 2022. "Large breathing effect in ZIF-65(Zn) with expansion and contraction of the SOD cage," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Shengjun Du & Jiawu Huang & Matthew R. Ryder & Luke L. Daemen & Cuiting Yang & Hongjun Zhang & Panchao Yin & Yuyan Lai & Jing Xiao & Sheng Dai & Banglin Chen, 2023. "Probing sub-5 Ångstrom micropores in carbon for precise light olefin/paraffin separation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Yong Peng & Hanting Xiong & Peixin Zhang & Zhiwei Zhao & Xing Liu & Shihui Tang & Yuan Liu & Zhenliang Zhu & Weizhen Zhou & Zhenning Deng & Junhui Liu & Yao Zhong & Zeliang Wu & Jingwen Chen & Zhenyu , 2024. "Interaction-selective molecular sieving adsorbent for direct separation of ethylene from senary C2-C4 olefin/paraffin mixture," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Rong Yang & Yu Wang & Jian-Wei Cao & Zi-Ming Ye & Tony Pham & Katherine A. Forrest & Rajamani Krishna & Hongwei Chen & Libo Li & Bo-Kai Ling & Tao Zhang & Tong Gao & Xue Jiang & Xiang-Ou Xu & Qian-Hao, 2024. "Hydrogen bond unlocking-driven pore structure control for shifting multi-component gas separation function," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40973-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.