IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40905-7.html
   My bibliography  Save this article

Effects of paleogeographic changes and CO2 variability on northern mid-latitudinal temperature gradients in the Cretaceous

Author

Listed:
  • Kaushal Gianchandani

    (Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram)

  • Sagi Maor

    (Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram)

  • Ori Adam

    (Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram)

  • Alexander Farnsworth

    (University of Bristol
    Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences)

  • Hezi Gildor

    (Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram)

  • Daniel J. Lunt

    (University of Bristol)

  • Nathan Paldor

    (Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram)

Abstract

The Cretaceous ‘greenhouse’ period (~145 to ~66 million years ago, Ma) in Earth’s history is relatively well documented by multiple paleoproxy records, which indicate that the meridional sea surface temperature (SST) gradient increased (non-monotonically) from the Valanginian (~135 Ma) to the Maastrichtian (~68 Ma). Changes in atmospheric CO2 concentration, solar constant, and paleogeography are the primary drivers of variations in the spatiotemporal distribution of SST. However, the particular contribution of each of these drivers (and their underlying mechanisms) to changes in the SST distribution remains poorly understood. Here we use data from a suite of paleoclimate simulations to compare the relative effects of atmospheric CO2 variability and paleogeographic changes on mid-latitudinal SST gradient through the Cretaceous. Further, we use a fundamental model of wind-driven ocean gyres to quantify how changes in the Northern Hemisphere paleogeography weaken the circulation in subtropical ocean gyres, leading to an increase in extratropical SSTs.

Suggested Citation

  • Kaushal Gianchandani & Sagi Maor & Ori Adam & Alexander Farnsworth & Hezi Gildor & Daniel J. Lunt & Nathan Paldor, 2023. "Effects of paleogeographic changes and CO2 variability on northern mid-latitudinal temperature gradients in the Cretaceous," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40905-7
    DOI: 10.1038/s41467-023-40905-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40905-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40905-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yannick Donnadieu & Emmanuelle Pucéat & Mathieu Moiroud & François Guillocheau & Jean- François Deconinck, 2016. "A better-ventilated ocean triggered by Late Cretaceous changes in continental configuration," Nature Communications, Nature, vol. 7(1), pages 1-12, April.
    2. Gavin L. Foster & Dana L. Royer & Daniel J. Lunt, 2017. "Future climate forcing potentially without precedent in the last 420 million years," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    3. Jean-Baptiste Ladant & Yannick Donnadieu, 2016. "Palaeogeographic regulation of glacial events during the Cretaceous supergreenhouse," Nature Communications, Nature, vol. 7(1), pages 1-9, November.
    4. Eleni Anagnostou & Eleanor H. John & Kirsty M. Edgar & Gavin L. Foster & Andy Ridgwell & Gordon N. Inglis & Richard D. Pancost & Daniel J. Lunt & Paul N. Pearson, 2016. "Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate," Nature, Nature, vol. 533(7603), pages 380-384, May.
    5. Liyenne Cavalheiro & Thomas Wagner & Sebastian Steinig & Cinzia Bottini & Wolf Dummann & Onoriode Esegbue & Gabriele Gambacorta & Victor Giraldo-Gómez & Alexander Farnsworth & Sascha Flögel & Peter Ho, 2021. "Impact of global cooling on Early Cretaceous high pCO2 world during the Weissert Event," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcelo A. De Lira Mota & Tom Dunkley Jones & Nursufiah Sulaiman & Kirsty M. Edgar & Tatsuhiko Yamaguchi & Melanie J. Leng & Markus Adloff & Sarah E. Greene & Richard Norris & Bridget Warren & Grace D, 2023. "Multi-proxy evidence for sea level fall at the onset of the Eocene-Oligocene transition," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Juan Pedro Rodríguez-López & Chihua Wu & Tatiana A. Vishnivetskaya & Julian B. Murton & Wenqiang Tang & Chao Ma, 2022. "Permafrost in the Cretaceous supergreenhouse," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Khushboo Gurung & Katie J. Field & Sarah A. Batterman & Simon W. Poulton & Benjamin J. W. Mills, 2024. "Geographic range of plants drives long-term climate change," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Khushboo Gurung & Katie J. Field & Sarah A. Batterman & Yves Goddéris & Yannick Donnadieu & Philipp Porada & Lyla L. Taylor & Benjamin J. W. Mills, 2022. "Climate windows of opportunity for plant expansion during the Phanerozoic," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Mazurkin PM, 2018. "Wave Patterns of Annual Global Carbon Dynamics (According to information Global_Carbon_Budget_2017v1.3.xlsx)," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 8(5), pages 100-113, December.
    6. Lauren N. Wilson & Jacob D. Gardner & John P. Wilson & Alex Farnsworth & Zackary R. Perry & Patrick S. Druckenmiller & Gregory M. Erickson & Chris L. Organ, 2024. "Global latitudinal gradients and the evolution of body size in dinosaurs and mammals," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Isabel Sauermilch & Joanne M. Whittaker & Andreas Klocker & David R. Munday & Katharina Hochmuth & Peter K. Bijl & Joseph H. LaCasce, 2021. "Gateway-driven weakening of ocean gyres leads to Southern Ocean cooling," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    8. Luigi Dallai & Zachary D. Sharp, 2024. "A tipping point in stable isotope composition of Antarctic meteoric waters during Cenozoic glaciation," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    9. Katherine A. Crichton & Jamie D. Wilson & Andy Ridgwell & Flavia Boscolo-Galazzo & Eleanor H. John & Bridget S. Wade & Paul N. Pearson, 2023. "What the geological past can tell us about the future of the ocean’s twilight zone," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Demian A. Nelson & John M. Cottle & Ilya N. Bindeman & Alfredo Camacho, 2022. "Ultra-depleted hydrogen isotopes in hydrated glass record Late Cretaceous glaciation in Antarctica," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Corentin Jouault & André Nel & Vincent Perrichot & Frédéric Legendre & Fabien L. Condamine, 2022. "Multiple drivers and lineage-specific insect extinctions during the Permo–Triassic," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Tais W. Dahl & Magnus A. R. Harding & Julia Brugger & Georg Feulner & Kion Norrman & Barry H. Lomax & Christopher K. Junium, 2022. "Low atmospheric CO2 levels before the rise of forested ecosystems," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Katharina Hochmuth & Joanne M. Whittaker & Isabel Sauermilch & Andreas Klocker & Karsten Gohl & Joseph H. LaCasce, 2022. "Southern Ocean biogenic blooms freezing-in Oligocene colder climates," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Lewis A. Jones & Philip D. Mannion & Alexander Farnsworth & Fran Bragg & Daniel J. Lunt, 2022. "Climatic and tectonic drivers shaped the tropical distribution of coral reefs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Richard D. Robertson & Alessandro De Pinto & Nicola Cenacchi, 2023. "Assessing the future global distribution of land ecosystems as determined by climate change and cropland incursion," Climatic Change, Springer, vol. 176(8), pages 1-22, August.
    16. Shah, Wasi Ul Hassan & Hao, Gang & Yan, Hong & Yasmeen, Rizwana & Padda, Ihtsham Ul Haq & Ullah, Assad, 2022. "The impact of trade, financial development and government integrity on energy efficiency: An analysis from G7-Countries," Energy, Elsevier, vol. 255(C).
    17. Caitlyn R. Witkowski & Anna S. Heydt & Paul J. Valdes & Marcel T. J. Meer & Stefan Schouten & Jaap S. Sinninghe Damsté, 2024. "Continuous sterane and phytane δ13C record reveals a substantial pCO2 decline since the mid-Miocene," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Xinwen Zhang & Uriel Gélin & Robert A. Spicer & Feixiang Wu & Alexander Farnsworth & Peirong Chen & Cédric Del Rio & Shufeng Li & Jia Liu & Jian Huang & Teresa E. V. Spicer & Kyle W. Tomlinson & Paul , 2022. "Rapid Eocene diversification of spiny plants in subtropical woodlands of central Tibet," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Joseph T. Flannery-Sutherland & Cameron D. Crossan & Corinne E. Myers & Austin J. W. Hendy & Neil H. Landman & James D. Witts, 2024. "Late Cretaceous ammonoids show that drivers of diversification are regionally heterogeneous," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Ian Eisenman & Kyle C. Armour, 2024. "The radiative feedback continuum from Snowball Earth to an ice-free hothouse," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40905-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.