IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39806-6.html
   My bibliography  Save this article

Multi-proxy evidence for sea level fall at the onset of the Eocene-Oligocene transition

Author

Listed:
  • Marcelo A. De Lira Mota

    (University of Birmingham
    University of São Paulo, Rua do Lago)

  • Tom Dunkley Jones

    (University of Birmingham)

  • Nursufiah Sulaiman

    (University of Birmingham
    Universiti Malaysia Kelantan Jeli Campus)

  • Kirsty M. Edgar

    (University of Birmingham)

  • Tatsuhiko Yamaguchi

    (National Museum of Nature and Science
    Kochi University)

  • Melanie J. Leng

    (British Geological Survey
    University of Nottingham)

  • Markus Adloff

    (University of Bristol
    University of Bern)

  • Sarah E. Greene

    (University of Birmingham)

  • Richard Norris

    (University of California San Diego)

  • Bridget Warren

    (University of Birmingham)

  • Grace Duffy

    (University of Birmingham)

  • Jennifer Farrant

    (University of Birmingham)

  • Masafumi Murayama

    (Kochi University
    Kochi University, B200 Monobe)

  • Jonathan Hall

    (University of Birmingham)

  • James Bendle

    (University of Birmingham)

Abstract

Continental-scale expansion of the East Antarctic Ice Sheet during the Eocene-Oligocene Transition (EOT) is one of the largest non-linear events in Earth’s climate history. Declining atmospheric carbon dioxide concentrations and orbital variability triggered glacial expansion and strong feedbacks in the climate system. Prominent among these feedbacks was the repartitioning of biogeochemical cycles between the continental shelves and the deep ocean with falling sea level. Here we present multiple proxies from a shallow shelf location that identify a marked regression and an elevated flux of continental-derived organic matter at the earliest stage of the EOT, a time of deep ocean carbonate dissolution and the extinction of oligotrophic phytoplankton groups. We link these observations using an Earth System model, whereby this first regression delivers a pulse of organic carbon to the oceans that could drive the observed patterns of deep ocean dissolution and acts as a transient negative feedback to climate cooling.

Suggested Citation

  • Marcelo A. De Lira Mota & Tom Dunkley Jones & Nursufiah Sulaiman & Kirsty M. Edgar & Tatsuhiko Yamaguchi & Melanie J. Leng & Markus Adloff & Sarah E. Greene & Richard Norris & Bridget Warren & Grace D, 2023. "Multi-proxy evidence for sea level fall at the onset of the Eocene-Oligocene transition," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39806-6
    DOI: 10.1038/s41467-023-39806-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39806-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39806-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Helen K. Coxall & Paul A. Wilson & Heiko Pälike & Caroline H. Lear & Jan Backman, 2005. "Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean," Nature, Nature, vol. 433(7021), pages 53-57, January.
    2. Gavin L. Foster & Dana L. Royer & Daniel J. Lunt, 2017. "Future climate forcing potentially without precedent in the last 420 million years," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    3. Sun Bo & Martin J. Siegert & Simon M. Mudd & David Sugden & Shuji Fujita & Cui Xiangbin & Jiang Yunyun & Tang Xueyuan & Li Yuansheng, 2009. "The Gamburtsev mountains and the origin and early evolution of the Antarctic Ice Sheet," Nature, Nature, vol. 459(7247), pages 690-693, June.
    4. Eleni Anagnostou & Eleanor H. John & Kirsty M. Edgar & Gavin L. Foster & Andy Ridgwell & Gordon N. Inglis & Richard D. Pancost & Daniel J. Lunt & Paul N. Pearson, 2016. "Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate," Nature, Nature, vol. 533(7603), pages 380-384, May.
    5. Robert M. DeConto & David Pollard & Paul A. Wilson & Heiko Pälike & Caroline H. Lear & Mark Pagani, 2008. "Thresholds for Cenozoic bipolar glaciation," Nature, Nature, vol. 455(7213), pages 652-656, October.
    6. Agostino Merico & Toby Tyrrell & Paul A. Wilson, 2008. "Eocene/Oligocene ocean de-acidification linked to Antarctic glaciation by sea-level fall," Nature, Nature, vol. 452(7190), pages 979-982, April.
    7. Robert M. DeConto & David Pollard, 2003. "Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2," Nature, Nature, vol. 421(6920), pages 245-249, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luigi Dallai & Zachary D. Sharp, 2024. "A tipping point in stable isotope composition of Antarctic meteoric waters during Cenozoic glaciation," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Tim E. Peer & Diederik Liebrand & Victoria E. Taylor & Swaantje Brzelinski & Iris Wolf & André Bornemann & Oliver Friedrich & Steven M. Bohaty & Chuang Xuan & Peter C. Lippert & Paul A. Wilson, 2024. "Eccentricity pacing and rapid termination of the early Antarctic ice ages," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Isabel Sauermilch & Joanne M. Whittaker & Andreas Klocker & David R. Munday & Katharina Hochmuth & Peter K. Bijl & Joseph H. LaCasce, 2021. "Gateway-driven weakening of ocean gyres leads to Southern Ocean cooling," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Katharina Hochmuth & Joanne M. Whittaker & Isabel Sauermilch & Andreas Klocker & Karsten Gohl & Joseph H. LaCasce, 2022. "Southern Ocean biogenic blooms freezing-in Oligocene colder climates," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Iestyn D. Barr & Matteo Spagnolo & Brice R. Rea & Robert G. Bingham & Rachel P. Oien & Kathryn Adamson & Jeremy C. Ely & Donal J. Mullan & Ramón Pellitero & Matt D. Tomkins, 2022. "60 million years of glaciation in the Transantarctic Mountains," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. Kaushal Gianchandani & Sagi Maor & Ori Adam & Alexander Farnsworth & Hezi Gildor & Daniel J. Lunt & Nathan Paldor, 2023. "Effects of paleogeographic changes and CO2 variability on northern mid-latitudinal temperature gradients in the Cretaceous," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Lijiang Hu & Ruikun Zeng & Jianwu Yao & Ziwei Liang & Zhaobing Zeng & Wenying Li & Ronghui Wang & Xianjiang Shu & Yong Chen & Jianfeng Ning, 2024. "Characteristics of the Soil Organic Carbon Pool in Paddy Fields in Guangdong Province, South China," Agriculture, MDPI, vol. 14(9), pages 1-13, August.
    8. Khushboo Gurung & Katie J. Field & Sarah A. Batterman & Simon W. Poulton & Benjamin J. W. Mills, 2024. "Geographic range of plants drives long-term climate change," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    9. Khushboo Gurung & Katie J. Field & Sarah A. Batterman & Yves Goddéris & Yannick Donnadieu & Philipp Porada & Lyla L. Taylor & Benjamin J. W. Mills, 2022. "Climate windows of opportunity for plant expansion during the Phanerozoic," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Qing Ji & Xiaoping Pang & Xi Zhao, 2014. "A bibliometric analysis of research on Antarctica during 1993–2012," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1925-1939, December.
    11. Mazurkin PM, 2018. "Wave Patterns of Annual Global Carbon Dynamics (According to information Global_Carbon_Budget_2017v1.3.xlsx)," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 8(5), pages 100-113, December.
    12. Lauren N. Wilson & Jacob D. Gardner & John P. Wilson & Alex Farnsworth & Zackary R. Perry & Patrick S. Druckenmiller & Gregory M. Erickson & Chris L. Organ, 2024. "Global latitudinal gradients and the evolution of body size in dinosaurs and mammals," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Stewart S. R. Jamieson & Neil Ross & Guy J. G. Paxman & Fiona J. Clubb & Duncan A. Young & Shuai Yan & Jamin Greenbaum & Donald D. Blankenship & Martin J. Siegert, 2023. "An ancient river landscape preserved beneath the East Antarctic Ice Sheet," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Zhengquan Yao & Xuefa Shi & Zhengtang Guo & Xinzhou Li & B. Nagender Nath & Christian Betzler & Hui Zhang & Sebastian Lindhorst & Pavan Miriyala, 2023. "Weakening of the South Asian summer monsoon linked to interhemispheric ice-sheet growth since 12 Ma," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Jan Audun Rasmussen & Nicolas Thibault & Christian Rasmussen, 2021. "Middle Ordovician astrochronology decouples asteroid breakup from glacially-induced biotic radiations," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    16. Katherine A. Crichton & Jamie D. Wilson & Andy Ridgwell & Flavia Boscolo-Galazzo & Eleanor H. John & Bridget S. Wade & Paul N. Pearson, 2023. "What the geological past can tell us about the future of the ocean’s twilight zone," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Campbell, Daniel E., 2016. "Emergy baseline for the Earth: A historical review of the science and a new calculation," Ecological Modelling, Elsevier, vol. 339(C), pages 96-125.
    18. Suning Hou & Lennert B. Stap & Ryan Paul & Mei Nelissen & Frida S. Hoem & Martin Ziegler & Appy Sluijs & Francesca Sangiorgi & Peter K. Bijl, 2023. "Reconciling Southern Ocean fronts equatorward migration with minor Antarctic ice volume change during Miocene cooling," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Corentin Jouault & André Nel & Vincent Perrichot & Frédéric Legendre & Fabien L. Condamine, 2022. "Multiple drivers and lineage-specific insect extinctions during the Permo–Triassic," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    20. Tais W. Dahl & Magnus A. R. Harding & Julia Brugger & Georg Feulner & Kion Norrman & Barry H. Lomax & Christopher K. Junium, 2022. "Low atmospheric CO2 levels before the rise of forested ecosystems," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39806-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.