IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35085-9.html
   My bibliography  Save this article

Low atmospheric CO2 levels before the rise of forested ecosystems

Author

Listed:
  • Tais W. Dahl

    (University of Copenhagen; Øster Voldgade 5−7
    China University of Geosciences)

  • Magnus A. R. Harding

    (University of Copenhagen; Øster Voldgade 5−7
    University of Chinese Academy of Sciences)

  • Julia Brugger

    (Member of the Leibniz Association
    Senckenberg Biodiversity and Climate Research Centre)

  • Georg Feulner

    (Member of the Leibniz Association)

  • Kion Norrman

    (King Fahd University of Petroleum and Minerals)

  • Barry H. Lomax

    (University of Nottingham, Sutton Bonington Campus)

  • Christopher K. Junium

    (Syracuse University; Syracuse)

Abstract

The emergence of forests on Earth (~385 million years ago, Ma)1 has been linked to an order-of-magnitude decline in atmospheric CO2 levels and global climatic cooling by altering continental weathering processes, but observational constraints on atmospheric CO2 before the rise of forests carry large, often unbound, uncertainties. Here, we calibrate a mechanistic model for gas exchange in modern lycophytes and constrain atmospheric CO2 levels 410–380 Ma from related fossilized plants with bound uncertainties of approximately ±100 ppm (1 sd). We find that the atmosphere contained ~525–715 ppm CO2 before continents were afforested, and that Earth was partially glaciated according to a palaeoclimate model. A process-driven biogeochemical model (COPSE) shows the appearance of trees with deep roots did not dramatically enhance atmospheric CO2 removal. Rather, shallow-rooted vascular ecosystems could have simultaneously caused abrupt atmospheric oxygenation and climatic cooling long before the rise of forests, although earlier CO2 levels are still unknown.

Suggested Citation

  • Tais W. Dahl & Magnus A. R. Harding & Julia Brugger & Georg Feulner & Kion Norrman & Barry H. Lomax & Christopher K. Junium, 2022. "Low atmospheric CO2 levels before the rise of forested ecosystems," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35085-9
    DOI: 10.1038/s41467-022-35085-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35085-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35085-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gavin L. Foster & Dana L. Royer & Daniel J. Lunt, 2017. "Future climate forcing potentially without precedent in the last 420 million years," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    2. Alexander J. Krause & Benjamin J. W. Mills & Shuang Zhang & Noah J. Planavsky & Timothy M. Lenton & Simon W. Poulton, 2018. "Stepwise oxygenation of the Paleozoic atmosphere," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    3. Jean-François Ghienne & André Desrochers & Thijs R.A. Vandenbroucke & Aicha Achab & Esther Asselin & Marie-Pierre Dabard & Claude Farley & Alfredo Loi & Florentin Paris & Steven Wickson & Jan Veizer, 2014. "A Cenozoic-style scenario for the end-Ordovician glaciation," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    4. P. Porada & T. M. Lenton & A. Pohl & B. Weber & L. Mander & Y. Donnadieu & C. Beer & U. Pöschl & A. Kleidon, 2016. "High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician," Nature Communications, Nature, vol. 7(1), pages 1-13, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khushboo Gurung & Katie J. Field & Sarah A. Batterman & Simon W. Poulton & Benjamin J. W. Mills, 2024. "Geographic range of plants drives long-term climate change," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khushboo Gurung & Katie J. Field & Sarah A. Batterman & Simon W. Poulton & Benjamin J. W. Mills, 2024. "Geographic range of plants drives long-term climate change," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Khushboo Gurung & Katie J. Field & Sarah A. Batterman & Yves Goddéris & Yannick Donnadieu & Philipp Porada & Lyla L. Taylor & Benjamin J. W. Mills, 2022. "Climate windows of opportunity for plant expansion during the Phanerozoic," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Chen, Haojie & Costanza, Robert & Kubiszewski, Ida, 2022. "Legitimacy and limitations of valuing the oxygen production of ecosystems," Ecosystem Services, Elsevier, vol. 58(C).
    4. Mazurkin PM, 2018. "Wave Patterns of Annual Global Carbon Dynamics (According to information Global_Carbon_Budget_2017v1.3.xlsx)," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 8(5), pages 100-113, December.
    5. Lauren N. Wilson & Jacob D. Gardner & John P. Wilson & Alex Farnsworth & Zackary R. Perry & Patrick S. Druckenmiller & Gregory M. Erickson & Chris L. Organ, 2024. "Global latitudinal gradients and the evolution of body size in dinosaurs and mammals," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Guoxiong Chen & Qiuming Cheng & Timothy W. Lyons & Jun Shen & Frits Agterberg & Ning Huang & Molei Zhao, 2022. "Reconstructing Earth’s atmospheric oxygenation history using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Corentin Jouault & André Nel & Vincent Perrichot & Frédéric Legendre & Fabien L. Condamine, 2022. "Multiple drivers and lineage-specific insect extinctions during the Permo–Triassic," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Katharina Hochmuth & Joanne M. Whittaker & Isabel Sauermilch & Andreas Klocker & Karsten Gohl & Joseph H. LaCasce, 2022. "Southern Ocean biogenic blooms freezing-in Oligocene colder climates," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Anna V. Shapiro & Christoph Brühl & Klaus Klingmüller & Benedikt Steil & Alexander I. Shapiro & Veronika Witzke & Nadiia Kostogryz & Laurent Gizon & Sami K. Solanki & Jos Lelieveld, 2023. "Metal-rich stars are less suitable for the evolution of life on their planets," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Daniel Eliahou Ontiveros & Gregory Beaugrand & Bertrand Lefebvre & Chloe Markussen Marcilly & Thomas Servais & Alexandre Pohl, 2023. "Impact of global climate cooling on Ordovician marine biodiversity," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Lewis A. Jones & Philip D. Mannion & Alexander Farnsworth & Fran Bragg & Daniel J. Lunt, 2022. "Climatic and tectonic drivers shaped the tropical distribution of coral reefs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Richard D. Robertson & Alessandro De Pinto & Nicola Cenacchi, 2023. "Assessing the future global distribution of land ecosystems as determined by climate change and cropland incursion," Climatic Change, Springer, vol. 176(8), pages 1-22, August.
    13. Shah, Wasi Ul Hassan & Hao, Gang & Yan, Hong & Yasmeen, Rizwana & Padda, Ihtsham Ul Haq & Ullah, Assad, 2022. "The impact of trade, financial development and government integrity on energy efficiency: An analysis from G7-Countries," Energy, Elsevier, vol. 255(C).
    14. Caitlyn R. Witkowski & Anna S. Heydt & Paul J. Valdes & Marcel T. J. Meer & Stefan Schouten & Jaap S. Sinninghe Damsté, 2024. "Continuous sterane and phytane δ13C record reveals a substantial pCO2 decline since the mid-Miocene," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Xinwen Zhang & Uriel Gélin & Robert A. Spicer & Feixiang Wu & Alexander Farnsworth & Peirong Chen & Cédric Del Rio & Shufeng Li & Jia Liu & Jian Huang & Teresa E. V. Spicer & Kyle W. Tomlinson & Paul , 2022. "Rapid Eocene diversification of spiny plants in subtropical woodlands of central Tibet," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Joseph T. Flannery-Sutherland & Cameron D. Crossan & Corinne E. Myers & Austin J. W. Hendy & Neil H. Landman & James D. Witts, 2024. "Late Cretaceous ammonoids show that drivers of diversification are regionally heterogeneous," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. Kaushal Gianchandani & Sagi Maor & Ori Adam & Alexander Farnsworth & Hezi Gildor & Daniel J. Lunt & Nathan Paldor, 2023. "Effects of paleogeographic changes and CO2 variability on northern mid-latitudinal temperature gradients in the Cretaceous," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    18. Marcelo A. De Lira Mota & Tom Dunkley Jones & Nursufiah Sulaiman & Kirsty M. Edgar & Tatsuhiko Yamaguchi & Melanie J. Leng & Markus Adloff & Sarah E. Greene & Richard Norris & Bridget Warren & Grace D, 2023. "Multi-proxy evidence for sea level fall at the onset of the Eocene-Oligocene transition," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35085-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.