IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v176y2023i8d10.1007_s10584-023-03584-3.html
   My bibliography  Save this article

Assessing the future global distribution of land ecosystems as determined by climate change and cropland incursion

Author

Listed:
  • Richard D. Robertson

    (International Food Policy Research Institute)

  • Alessandro De Pinto

    (University of Greenwich)

  • Nicola Cenacchi

    (International Food Policy Research Institute)

Abstract

The geographic distribution of natural ecosystems is affected by both climate and cropland. Discussions of future land use/land cover usually focus on how cropland expands and displaces natural vegetation especially as climate change impacts become stronger. Less commonly considered is the direct influence of climate change on natural ecosystems simultaneously with cropland incursion. We combine a natural vegetation model responsive to climate with a cropland allocation algorithm to assess the relative importance of climate change compared to cropland incursion. Globally, the model indicates that climate change drives larger gains and losses than cropland incursion. For example, in the Amazonian rainforests, more than one sixth of the forest area could be lost due to climate change with cropland playing virtually no role. Our findings suggest that policies to protect specific ecosystems may be undercut by climate change and that localized analyses that fully account for the impacts of a changing climate on natural vegetation and agriculture are necessary to formulate policies that preserve natural ecosystems over the long term.

Suggested Citation

  • Richard D. Robertson & Alessandro De Pinto & Nicola Cenacchi, 2023. "Assessing the future global distribution of land ecosystems as determined by climate change and cropland incursion," Climatic Change, Springer, vol. 176(8), pages 1-22, August.
  • Handle: RePEc:spr:climat:v:176:y:2023:i:8:d:10.1007_s10584-023-03584-3
    DOI: 10.1007/s10584-023-03584-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-023-03584-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-023-03584-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gavin L. Foster & Dana L. Royer & Daniel J. Lunt, 2017. "Future climate forcing potentially without precedent in the last 420 million years," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    2. Chomitz, Kenneth M & Gray, David A, 1996. "Roads, Land Use, and Deforestation: A Spatial Model Applied to Belize," The World Bank Economic Review, World Bank, vol. 10(3), pages 487-512, September.
    3. Christoph Müller & Richard D. Robertson, 2014. "Projecting future crop productivity for global economic modeling," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 37-50, January.
    4. Merritt R. Turetsky & Benjamin W. Abbott & Miriam C. Jones & Katey Walter Anthony & David Olefeldt & Edward A. G. Schuur & Charles Koven & A. David McGuire & Guido Grosse & Peter Kuhry & Gustaf Hugeli, 2019. "Permafrost collapse is accelerating carbon release," Nature, Nature, vol. 569(7754), pages 32-34, May.
    5. Andrew Kulmatiski & Karen H. Beard, 2013. "Woody plant encroachment facilitated by increased precipitation intensity," Nature Climate Change, Nature, vol. 3(9), pages 833-837, September.
    6. Christoph Schmitz & Hans van Meijl & Page Kyle & Gerald C. Nelson & Shinichiro Fujimori & Angelo Gurgel & Petr Havlik & Edwina Heyhoe & Daniel Mason d'Croz & Alexander Popp & Ron Sands & Andrzej Tabea, 2014. "Land-use change trajectories up to 2050: insights from a global agro-economic model comparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 69-84, January.
    7. Robinson, Sherman & Mason d'Croz, Daniel & Islam, Shahnila & Sulser, Timothy B. & Robertson, Richard D. & Zhu, Tingju & Gueneau, Arthur & Pitois, Gauthier & Rosegrant, Mark W., 2015. "The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT): Model description for version 3:," IFPRI discussion papers 1483, International Food Policy Research Institute (IFPRI).
    8. Florian Zabel & Ruth Delzeit & Julia M. Schneider & Ralf Seppelt & Wolfram Mauser & Tomáš Václavík, 2019. "Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    9. Egoh, Benis N. & O'Farrell, Patrick J. & Charef, Aymen & Josephine Gurney, Leigh & Koellner, Thomas & Nibam Abi, Henry & Egoh, Mody & Willemen, Louise, 2012. "An African account of ecosystem service provision: Use, threats and policy options for sustainable livelihoods," Ecosystem Services, Elsevier, vol. 2(C), pages 71-81.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jerome Dumortier & Miguel Carriquiry & Amani Elobeid, 2021. "Impact of climate change on global agricultural markets under different shared socioeconomic pathways," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 963-984, November.
    2. Dorin, Bruno & Joly, Pierre-Benoît, 2020. "Modelling world agriculture as a learning machine? From mainstream models to Agribiom 1.0," Land Use Policy, Elsevier, vol. 96(C).
    3. Palazzo,Amanda & Valin,Hugo Jean Pierre & Batka,Miroslav & Havlík,Petr, 2019. "Investment Needs for Irrigation Infrastructure along Different Socioeconomic Pathways," Policy Research Working Paper Series 8744, The World Bank.
    4. Food and Agricultural Organization [FAO], 2016. "Climate Change and Food Systems: Global Assessments and Implications for Food Security and Trade," Working Papers id:8512, eSocialSciences.
    5. Arki, Vesa & Koskikala, Joni & Fagerholm, Nora & Kisanga, Danielson & Käyhkö, Niina, 2020. "Associations between local land use/land cover and place-based landscape service patterns in rural Tanzania," Ecosystem Services, Elsevier, vol. 41(C).
    6. Martin Lampe & Dirk Willenbockel & Helal Ahammad & Elodie Blanc & Yongxia Cai & Katherine Calvin & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe & Page Kyle & Hermann Lotze-Campe, 2014. "Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 3-20, January.
    7. Gerald C. Nelson & Dominique Mensbrugghe & Helal Ahammad & Elodie Blanc & Katherine Calvin & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe & Page Kyle & Hermann Lotze-Campen & Martin Lampe & Daniel Ma, 2014. "Agriculture and climate change in global scenarios: why don't the models agree," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 85-101, January.
    8. Shaikh, M. Abdullah & Hadjikakou, Michalis & Geyik, Ozge & Bryan, Brett A., 2024. "Assessing global agri-food system exceedance of national cropland limits for linking responsible consumption and production under SDG 12," Ecological Economics, Elsevier, vol. 215(C).
    9. Nelson B. Villoria & Derek Byerlee & James Stevenson, 2014. "The Effects of Agricultural Technological Progress on Deforestation: What Do We Really Know?," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 36(2), pages 211-237.
    10. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    11. Jayatilleke S. Bandara & Yiyong Cai, 2014. "The impact of climate change on food crop productivity, food prices and food security in South Asia," Economic Analysis and Policy, Elsevier, vol. 44(4), pages 451-465.
    12. Argueyrolles, Robin & Delzeit, Ruth, 2022. "The interconnections between Fossil Fuel Subsidy Reforms and biofuels," Conference papers 333492, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    13. Gerald Nelson & Jessica Bogard & Keith Lividini & Joanne Arsenault & Malcolm Riley & Timothy B. Sulser & Daniel Mason-D’Croz & Brendan Power & David Gustafson & Mario Herrero & Keith Wiebe & Karen Coo, 2018. "Income growth and climate change effects on global nutrition security to mid-century," Nature Sustainability, Nature, vol. 1(12), pages 773-781, December.
    14. O. Borodina, S. Kyryziuk, V. Yarovyi, Yu. Ermoliev, T. Ermolieva, 2016. "Modeling local land uses under the global climate change," Economy and Forecasting, Valeriy Heyets, issue 1, pages 117-128.
    15. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    16. Springmann, Marco & Mason-D'Croz, Daniel & Robinson, Sherman & Wiebe, Keith & Scarborough, Peter, 2016. "The health co-benefits of a global greenhouse-gas tax on food," Conference papers 332766, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Alejandro López-Feldman, 2012. "Deforestación en México: Un análisis preliminar," Working Papers DTE 527, CIDE, División de Economía.
    18. Kere, Eric Nazindigouba & Choumert, Johanna & Combes Motel, Pascale & Combes, Jean Louis & Santoni, Olivier & Schwartz, Sonia, 2017. "Addressing Contextual and Location Biases in the Assessment of Protected Areas Effectiveness on Deforestation in the Brazilian Amazônia," Ecological Economics, Elsevier, vol. 136(C), pages 148-158.
    19. De Pinto, Alessandro & Wiebe, Keith D. & Rosegrant, Mark W., 2016. "Climate change and agricultural policy options: A global-to-local approach," Policy briefs 978-089629-244-4, International Food Policy Research Institute (IFPRI).
    20. Suzi Kerr & Joanna Hendy & Shuguang Liu & Alexander S. P. Pfaff, 2004. "Tropical Forest Protection, Uncertainty, and the Environmental Integrity of Carbon Mitigation Policies," Working Papers 04_03, Motu Economic and Public Policy Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:176:y:2023:i:8:d:10.1007_s10584-023-03584-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.