IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40800-1.html
   My bibliography  Save this article

Structural insights into opposing actions of neurosteroids on GABAA receptors

Author

Listed:
  • Dagimhiwat H. Legesse

    (UT Southwestern Medical Center)

  • Chen Fan

    (Stockholm University)

  • Jinfeng Teng

    (University of California San Diego)

  • Yuxuan Zhuang

    (Stockholm University)

  • Rebecca J. Howard

    (Stockholm University)

  • Colleen M. Noviello

    (University of California San Diego)

  • Erik Lindahl

    (Stockholm University
    KTH Royal Institute of Technology)

  • Ryan E. Hibbs

    (UT Southwestern Medical Center
    University of California San Diego)

Abstract

γ-Aminobutyric acid type A (GABAA) receptors mediate fast inhibitory signaling in the brain and are targets of numerous drugs and endogenous neurosteroids. A subset of neurosteroids are GABAA receptor positive allosteric modulators; one of these, allopregnanolone, is the only drug approved specifically for treating postpartum depression. There is a consensus emerging from structural, physiological and photolabeling studies as to where positive modulators bind, but how they potentiate GABA activation remains unclear. Other neurosteroids are negative modulators of GABAA receptors, but their binding sites remain debated. Here we present structures of a synaptic GABAA receptor bound to allopregnanolone and two inhibitory sulfated neurosteroids. Allopregnanolone binds at the receptor-bilayer interface, in the consensus potentiator site. In contrast, inhibitory neurosteroids bind in the pore. MD simulations and electrophysiology support a mechanism by which allopregnanolone potentiates channel activity and suggest the dominant mechanism for sulfated neurosteroid inhibition is through pore block.

Suggested Citation

  • Dagimhiwat H. Legesse & Chen Fan & Jinfeng Teng & Yuxuan Zhuang & Rebecca J. Howard & Colleen M. Noviello & Erik Lindahl & Ryan E. Hibbs, 2023. "Structural insights into opposing actions of neurosteroids on GABAA receptors," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40800-1
    DOI: 10.1038/s41467-023-40800-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40800-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40800-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ryan E. Hibbs & Eric Gouaux, 2011. "Principles of activation and permeation in an anion-selective Cys-loop receptor," Nature, Nature, vol. 474(7349), pages 54-60, June.
    2. Shaotong Zhu & Colleen M. Noviello & Jinfeng Teng & Richard M. Walsh & Jeong Joo Kim & Ryan E. Hibbs, 2018. "Structure of a human synaptic GABAA receptor," Nature, Nature, vol. 559(7712), pages 67-72, July.
    3. Arvind Kumar & Sandip Basak & Shanlin Rao & Yvonne Gicheru & Megan L. Mayer & Mark S. P. Sansom & Sudha Chakrapani, 2020. "Mechanisms of activation and desensitization of full-length glycine receptor in lipid nanodiscs," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    4. Shaotong Zhu & Akshay Sridhar & Jinfeng Teng & Rebecca J. Howard & Erik Lindahl & Ryan E. Hibbs, 2022. "Structural and dynamic mechanisms of GABAA receptor modulators with opposing activities," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Simonas Masiulis & Rooma Desai & Tomasz Uchański & Itziar Serna Martin & Duncan Laverty & Dimple Karia & Tomas Malinauskas & Jasenko Zivanov & Els Pardon & Abhay Kotecha & Jan Steyaert & Keith W. Mill, 2019. "Author Correction: GABAA receptor signalling mechanisms revealed by structural pharmacology," Nature, Nature, vol. 566(7744), pages 8-8, February.
    6. Thorsten Althoff & Ryan E. Hibbs & Surajit Banerjee & Eric Gouaux, 2014. "X-ray structures of GluCl in apo states reveal a gating mechanism of Cys-loop receptors," Nature, Nature, vol. 512(7514), pages 333-337, August.
    7. Simonas Masiulis & Rooma Desai & Tomasz Uchański & Itziar Serna Martin & Duncan Laverty & Dimple Karia & Tomas Malinauskas & Jasenko Zivanov & Els Pardon & Abhay Kotecha & Jan Steyaert & Keith W. Mill, 2019. "GABAA receptor signalling mechanisms revealed by structural pharmacology," Nature, Nature, vol. 565(7740), pages 454-459, January.
    8. Qiang Chen & Marta M. Wells & Palaniappa Arjunan & Tommy S. Tillman & Aina E. Cohen & Yan Xu & Pei Tang, 2018. "Structural basis of neurosteroid anesthetic action on GABAA receptors," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    9. Jeong Joo Kim & Anant Gharpure & Jinfeng Teng & Yuxuan Zhuang & Rebecca J. Howard & Shaotong Zhu & Colleen M. Noviello & Richard M. Walsh & Erik Lindahl & Ryan E. Hibbs, 2020. "Shared structural mechanisms of general anaesthetics and benzodiazepines," Nature, Nature, vol. 585(7824), pages 303-308, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weronika Chojnacka & Jinfeng Teng & Jeong Joo Kim & Anders A. Jensen & Ryan E. Hibbs, 2024. "Structural insights into GABAA receptor potentiation by Quaalude," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Chen Fan & John Cowgill & Rebecca J. Howard & Erik Lindahl, 2024. "Divergent mechanisms of steroid inhibition in the human ρ1 GABAA receptor," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weronika Chojnacka & Jinfeng Teng & Jeong Joo Kim & Anders A. Jensen & Ryan E. Hibbs, 2024. "Structural insights into GABAA receptor potentiation by Quaalude," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Arvind Kumar & Kayla Kindig & Shanlin Rao & Afroditi-Maria Zaki & Sandip Basak & Mark S. P. Sansom & Philip C. Biggin & Sudha Chakrapani, 2022. "Structural basis for cannabinoid-induced potentiation of alpha1-glycine receptors in lipid nanodiscs," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Shaotong Zhu & Akshay Sridhar & Jinfeng Teng & Rebecca J. Howard & Erik Lindahl & Ryan E. Hibbs, 2022. "Structural and dynamic mechanisms of GABAA receptor modulators with opposing activities," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Nikhil Bharambe & Zhuowen Li & David Seiferth & Asha Manikkoth Balakrishna & Philip C. Biggin & Sandip Basak, 2024. "Cryo-EM structures of prokaryotic ligand-gated ion channel GLIC provide insights into gating in a lipid environment," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Vikram Dalal & Mark J. Arcario & John T. Petroff & Brandon K. Tan & Noah M. Dietzen & Michael J. Rau & James A. J. Fitzpatrick & Grace Brannigan & Wayland W. L. Cheng, 2024. "Lipid nanodisc scaffold and size alter the structure of a pentameric ligand-gated ion channel," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. John T. Petroff & Noah M. Dietzen & Ezry Santiago-McRae & Brett Deng & Maya S. Washington & Lawrence J. Chen & K. Trent Moreland & Zengqin Deng & Michael Rau & James A. J. Fitzpatrick & Peng Yuan & Th, 2022. "Open-channel structure of a pentameric ligand-gated ion channel reveals a mechanism of leaflet-specific phospholipid modulation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Marie S. Prevost & Nathalie Barilone & Gabrielle Dejean de la Bâtie & Stéphanie Pons & Gabriel Ayme & Patrick England & Marc Gielen & François Bontems & Gérard Pehau-Arnaudet & Uwe Maskos & Pierre , 2023. "An original potentiating mechanism revealed by the cryo-EM structures of the human α7 nicotinic receptor in complex with nanobodies," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Nathan L. Absalom & Vivian W. Y. Liao & Katrine M. H. Johannesen & Elena Gardella & Julia Jacobs & Gaetan Lesca & Zeynep Gokce-Samar & Alexis Arzimanoglou & Shimriet Zeidler & Pasquale Striano & Pierr, 2022. "Gain-of-function and loss-of-function GABRB3 variants lead to distinct clinical phenotypes in patients with developmental and epileptic encephalopathies," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Eric Gibbs & Emily Klemm & David Seiferth & Arvind Kumar & Serban L. Ilca & Philip C. Biggin & Sudha Chakrapani, 2023. "Conformational transitions and allosteric modulation in a heteromeric glycine receptor," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Heng Liu & Dapeng Sun & Alexander Myasnikov & Marjorie Damian & Jean-Louis Baneres & Ji Sun & Cheng Zhang, 2021. "Structural basis of human ghrelin receptor signaling by ghrelin and the synthetic agonist ibutamoren," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    11. Umang Goswami & Md Mahfuzur Rahman & Jinfeng Teng & Ryan E. Hibbs, 2023. "Structural interplay of anesthetics and paralytics on muscle nicotinic receptors," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Nazia Hussain & Ashish Apotikar & Shabareesh Pidathala & Sourajit Mukherjee & Ananth Prasad Burada & Sujit Kumar Sikdar & Kutti R. Vinothkumar & Aravind Penmatsa, 2024. "Cryo-EM structures of pannexin 1 and 3 reveal differences among pannexin isoforms," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Xiaofen Liu & Weiwei Wang, 2023. "Asymmetric gating of a human hetero-pentameric glycine receptor," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Peng Huang & Raminta Venskutonytė & Rashmi B. Prasad & Hamidreza Ardalani & Sofia W. Maré & Xiao Fan & Ping Li & Peter Spégel & Nieng Yan & Pontus Gourdon & Isabella Artner & Karin Lindkvist-Petersso, 2023. "Cryo-EM structure supports a role of AQP7 as a junction protein," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Laurent Mackay & Hana Zemkova & Stanko S Stojilkovic & Arthur Sherman & Anmar Khadra, 2017. "Deciphering the regulation of P2X4 receptor channel gating by ivermectin using Markov models," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-27, July.
    16. Xiaolong Gao & Philipp A. M. Schmidpeter & Vladimir Berka & Ryan J. Durham & Chen Fan & Vasanthi Jayaraman & Crina M. Nimigean, 2022. "Gating intermediates reveal inhibitory role of the voltage sensor in a cyclic nucleotide-modulated ion channel," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Emma Rie Olander & Dieter Janzen & Carmen Villmann & Anders A Jensen, 2020. "Comparison of biophysical properties of α1β2 and α3β2 GABAA receptors in whole-cell patch-clamp electrophysiological recordings," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-13, June.
    18. Mackenzie J. Thompson & Farid Mansoub Bekarkhanechi & Anna Ananchenko & Hugues Nury & John E. Baenziger, 2024. "A release of local subunit conformational heterogeneity underlies gating in a muscle nicotinic acetylcholine receptor," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Zhengshan Hu & Xiangdong Zheng & Jian Yang, 2023. "Conformational trajectory of allosteric gating of the human cone photoreceptor cyclic nucleotide-gated channel," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    20. Shingo Hiroki & Hikari Yoshitane & Hinako Mitsui & Hirofumi Sato & Chie Umatani & Shinji Kanda & Yoshitaka Fukada & Yuichi Iino, 2022. "Molecular encoding and synaptic decoding of context during salt chemotaxis in C. elegans," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40800-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.