IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38827-5.html
   My bibliography  Save this article

Structural interplay of anesthetics and paralytics on muscle nicotinic receptors

Author

Listed:
  • Umang Goswami

    (University of Texas Southwestern Medical Center)

  • Md Mahfuzur Rahman

    (University of Texas Southwestern Medical Center
    Thermo Fisher Scientific)

  • Jinfeng Teng

    (University of California, San Diego)

  • Ryan E. Hibbs

    (University of Texas Southwestern Medical Center
    University of California, San Diego)

Abstract

General anesthetics and neuromuscular blockers are used together during surgery to stabilize patients in an unconscious state. Anesthetics act mainly by potentiating inhibitory ion channels and inhibiting excitatory ion channels, with the net effect of dampening nervous system excitability. Neuromuscular blockers act by antagonizing nicotinic acetylcholine receptors at the motor endplate; these excitatory ligand-gated ion channels are also inhibited by general anesthetics. The mechanisms by which anesthetics and neuromuscular blockers inhibit nicotinic receptors are poorly understood but underlie safe and effective surgeries. Here we took a direct structural approach to define how a commonly used anesthetic and two neuromuscular blockers act on a muscle-type nicotinic receptor. We discover that the intravenous anesthetic etomidate binds at an intrasubunit site in the transmembrane domain and stabilizes a non-conducting, desensitized-like state of the channel. The depolarizing neuromuscular blocker succinylcholine also stabilizes a desensitized channel but does so through binding to the classical neurotransmitter site. Rocuronium binds in this same neurotransmitter site but locks the receptor in a resting, non-conducting state. Together, this study reveals a structural mechanism for how general anesthetics work on excitatory nicotinic receptors and further rationalizes clinical observations in how general anesthetics and neuromuscular blockers interact.

Suggested Citation

  • Umang Goswami & Md Mahfuzur Rahman & Jinfeng Teng & Ryan E. Hibbs, 2023. "Structural interplay of anesthetics and paralytics on muscle nicotinic receptors," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38827-5
    DOI: 10.1038/s41467-023-38827-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38827-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38827-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeong Joo Kim & Anant Gharpure & Jinfeng Teng & Yuxuan Zhuang & Rebecca J. Howard & Shaotong Zhu & Colleen M. Noviello & Richard M. Walsh & Erik Lindahl & Ryan E. Hibbs, 2020. "Shared structural mechanisms of general anaesthetics and benzodiazepines," Nature, Nature, vol. 585(7824), pages 303-308, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaotong Zhu & Akshay Sridhar & Jinfeng Teng & Rebecca J. Howard & Erik Lindahl & Ryan E. Hibbs, 2022. "Structural and dynamic mechanisms of GABAA receptor modulators with opposing activities," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. John T. Petroff & Noah M. Dietzen & Ezry Santiago-McRae & Brett Deng & Maya S. Washington & Lawrence J. Chen & K. Trent Moreland & Zengqin Deng & Michael Rau & James A. J. Fitzpatrick & Peng Yuan & Th, 2022. "Open-channel structure of a pentameric ligand-gated ion channel reveals a mechanism of leaflet-specific phospholipid modulation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Dagimhiwat H. Legesse & Chen Fan & Jinfeng Teng & Yuxuan Zhuang & Rebecca J. Howard & Colleen M. Noviello & Erik Lindahl & Ryan E. Hibbs, 2023. "Structural insights into opposing actions of neurosteroids on GABAA receptors," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Weronika Chojnacka & Jinfeng Teng & Jeong Joo Kim & Anders A. Jensen & Ryan E. Hibbs, 2024. "Structural insights into GABAA receptor potentiation by Quaalude," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Mackenzie J. Thompson & Farid Mansoub Bekarkhanechi & Anna Ananchenko & Hugues Nury & John E. Baenziger, 2024. "A release of local subunit conformational heterogeneity underlies gating in a muscle nicotinic acetylcholine receptor," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Vikram Dalal & Mark J. Arcario & John T. Petroff & Brandon K. Tan & Noah M. Dietzen & Michael J. Rau & James A. J. Fitzpatrick & Grace Brannigan & Wayland W. L. Cheng, 2024. "Lipid nanodisc scaffold and size alter the structure of a pentameric ligand-gated ion channel," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Arvind Kumar & Kayla Kindig & Shanlin Rao & Afroditi-Maria Zaki & Sandip Basak & Mark S. P. Sansom & Philip C. Biggin & Sudha Chakrapani, 2022. "Structural basis for cannabinoid-induced potentiation of alpha1-glycine receptors in lipid nanodiscs," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38827-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.