IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v474y2011i7349d10.1038_nature10139.html
   My bibliography  Save this article

Principles of activation and permeation in an anion-selective Cys-loop receptor

Author

Listed:
  • Ryan E. Hibbs

    (Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA)

  • Eric Gouaux

    (Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
    Howard Hughes Medical Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA)

Abstract

Fast inhibitory neurotransmission is essential for nervous system function and is mediated by binding of inhibitory neurotransmitters to receptors of the Cys-loop family embedded in the membranes of neurons. Neurotransmitter binding triggers a conformational change in the receptor, opening an intrinsic chloride channel and thereby dampening neuronal excitability. Here we present the first three-dimensional structure, to our knowledge, of an inhibitory anion-selective Cys-loop receptor, the homopentameric Caenorhabditis elegans glutamate-gated chloride channel α (GluCl), at 3.3 Å resolution. The X-ray structure of the GluCl–Fab complex was determined with the allosteric agonist ivermectin and in additional structures with the endogenous neurotransmitter l-glutamate and the open-channel blocker picrotoxin. Ivermectin, used to treat river blindness, binds in the transmembrane domain of the receptor and stabilizes an open-pore conformation. Glutamate binds in the classical agonist site at subunit interfaces, and picrotoxin directly occludes the pore near its cytosolic base. GluCl provides a framework for understanding mechanisms of fast inhibitory neurotransmission and allosteric modulation of Cys-loop receptors.

Suggested Citation

  • Ryan E. Hibbs & Eric Gouaux, 2011. "Principles of activation and permeation in an anion-selective Cys-loop receptor," Nature, Nature, vol. 474(7349), pages 54-60, June.
  • Handle: RePEc:nat:nature:v:474:y:2011:i:7349:d:10.1038_nature10139
    DOI: 10.1038/nature10139
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature10139
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature10139?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laurent Mackay & Hana Zemkova & Stanko S Stojilkovic & Arthur Sherman & Anmar Khadra, 2017. "Deciphering the regulation of P2X4 receptor channel gating by ivermectin using Markov models," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-27, July.
    2. Nazia Hussain & Ashish Apotikar & Shabareesh Pidathala & Sourajit Mukherjee & Ananth Prasad Burada & Sujit Kumar Sikdar & Kutti R. Vinothkumar & Aravind Penmatsa, 2024. "Cryo-EM structures of pannexin 1 and 3 reveal differences among pannexin isoforms," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Dagimhiwat H. Legesse & Chen Fan & Jinfeng Teng & Yuxuan Zhuang & Rebecca J. Howard & Colleen M. Noviello & Erik Lindahl & Ryan E. Hibbs, 2023. "Structural insights into opposing actions of neurosteroids on GABAA receptors," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Eric Gibbs & Emily Klemm & David Seiferth & Arvind Kumar & Serban L. Ilca & Philip C. Biggin & Sudha Chakrapani, 2023. "Conformational transitions and allosteric modulation in a heteromeric glycine receptor," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Nikhil Bharambe & Zhuowen Li & David Seiferth & Asha Manikkoth Balakrishna & Philip C. Biggin & Sandip Basak, 2024. "Cryo-EM structures of prokaryotic ligand-gated ion channel GLIC provide insights into gating in a lipid environment," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:474:y:2011:i:7349:d:10.1038_nature10139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.