IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41734-4.html
   My bibliography  Save this article

An original potentiating mechanism revealed by the cryo-EM structures of the human α7 nicotinic receptor in complex with nanobodies

Author

Listed:
  • Marie S. Prevost

    (Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit)

  • Nathalie Barilone

    (Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit)

  • Gabrielle Dejean de la Bâtie

    (Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit)

  • Stéphanie Pons

    (Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems Unit)

  • Gabriel Ayme

    (Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Antibody Engineering Platform)

  • Patrick England

    (Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Molecular Biophysics Platform)

  • Marc Gielen

    (Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit
    Sorbonne Université)

  • François Bontems

    (Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Structural Virology Unit
    Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, Université Paris Saclay)

  • Gérard Pehau-Arnaudet

    (Institut Pasteur, Université Paris Cité, Ultrastructural Bioimaging Core Facility)

  • Uwe Maskos

    (Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems Unit)

  • Pierre Lafaye

    (Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Antibody Engineering Platform)

  • Pierre-Jean Corringer

    (Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit)

Abstract

The human α7 nicotinic receptor is a pentameric channel mediating cellular and neuronal communication. It has attracted considerable interest in designing ligands for the treatment of neurological and psychiatric disorders. To develop a novel class of α7 ligands, we recently generated two nanobodies named E3 and C4, acting as positive allosteric modulator and silent allosteric ligand, respectively. Here, we solved the cryo-electron microscopy structures of the nanobody-receptor complexes. E3 and C4 bind to a common epitope involving two subunits at the apex of the receptor. They form by themselves a symmetric pentameric assembly that extends the extracellular domain. Unlike C4, the binding of E3 drives an agonist-bound conformation of the extracellular domain in the absence of an orthosteric agonist, and mutational analysis shows a key contribution of an N-linked sugar moiety in mediating E3 potentiation. The nanobody E3, by remotely controlling the global allosteric conformation of the receptor, implements an original mechanism of regulation that opens new avenues for drug design.

Suggested Citation

  • Marie S. Prevost & Nathalie Barilone & Gabrielle Dejean de la Bâtie & Stéphanie Pons & Gabriel Ayme & Patrick England & Marc Gielen & François Bontems & Gérard Pehau-Arnaudet & Uwe Maskos & Pierre , 2023. "An original potentiating mechanism revealed by the cryo-EM structures of the human α7 nicotinic receptor in complex with nanobodies," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41734-4
    DOI: 10.1038/s41467-023-41734-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41734-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41734-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shaotong Zhu & Colleen M. Noviello & Jinfeng Teng & Richard M. Walsh & Jeong Joo Kim & Ryan E. Hibbs, 2018. "Structure of a human synaptic GABAA receptor," Nature, Nature, vol. 559(7712), pages 67-72, July.
    2. Ghérici Hassaine & Cédric Deluz & Luigino Grasso & Romain Wyss & Menno B. Tol & Ruud Hovius & Alexandra Graff & Henning Stahlberg & Takashi Tomizaki & Aline Desmyter & Christophe Moreau & Xiao-Dan Li , 2014. "X-ray structure of the mouse serotonin 5-HT3 receptor," Nature, Nature, vol. 512(7514), pages 276-281, August.
    3. Simonas Masiulis & Rooma Desai & Tomasz Uchański & Itziar Serna Martin & Duncan Laverty & Dimple Karia & Tomas Malinauskas & Jasenko Zivanov & Els Pardon & Abhay Kotecha & Jan Steyaert & Keith W. Mill, 2019. "Author Correction: GABAA receptor signalling mechanisms revealed by structural pharmacology," Nature, Nature, vol. 566(7744), pages 8-8, February.
    4. Richard M. Walsh & Soung-Hun Roh & Anant Gharpure & Claudio L. Morales-Perez & Jinfeng Teng & Ryan E. Hibbs, 2018. "Structural principles of distinct assemblies of the human α4β2 nicotinic receptor," Nature, Nature, vol. 557(7704), pages 261-265, May.
    5. Simonas Masiulis & Rooma Desai & Tomasz Uchański & Itziar Serna Martin & Duncan Laverty & Dimple Karia & Tomas Malinauskas & Jasenko Zivanov & Els Pardon & Abhay Kotecha & Jan Steyaert & Keith W. Mill, 2019. "GABAA receptor signalling mechanisms revealed by structural pharmacology," Nature, Nature, vol. 565(7740), pages 454-459, January.
    6. Claudio L. Morales-Perez & Colleen M. Noviello & Ryan E. Hibbs, 2016. "X-ray structure of the human α4β2 nicotinic receptor," Nature, Nature, vol. 538(7625), pages 411-415, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaotong Zhu & Akshay Sridhar & Jinfeng Teng & Rebecca J. Howard & Erik Lindahl & Ryan E. Hibbs, 2022. "Structural and dynamic mechanisms of GABAA receptor modulators with opposing activities," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Dagimhiwat H. Legesse & Chen Fan & Jinfeng Teng & Yuxuan Zhuang & Rebecca J. Howard & Colleen M. Noviello & Erik Lindahl & Ryan E. Hibbs, 2023. "Structural insights into opposing actions of neurosteroids on GABAA receptors," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Weronika Chojnacka & Jinfeng Teng & Jeong Joo Kim & Anders A. Jensen & Ryan E. Hibbs, 2024. "Structural insights into GABAA receptor potentiation by Quaalude," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Nikhil Bharambe & Zhuowen Li & David Seiferth & Asha Manikkoth Balakrishna & Philip C. Biggin & Sandip Basak, 2024. "Cryo-EM structures of prokaryotic ligand-gated ion channel GLIC provide insights into gating in a lipid environment," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Arvind Kumar & Kayla Kindig & Shanlin Rao & Afroditi-Maria Zaki & Sandip Basak & Mark S. P. Sansom & Philip C. Biggin & Sudha Chakrapani, 2022. "Structural basis for cannabinoid-induced potentiation of alpha1-glycine receptors in lipid nanodiscs," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Nathan L. Absalom & Vivian W. Y. Liao & Katrine M. H. Johannesen & Elena Gardella & Julia Jacobs & Gaetan Lesca & Zeynep Gokce-Samar & Alexis Arzimanoglou & Shimriet Zeidler & Pasquale Striano & Pierr, 2022. "Gain-of-function and loss-of-function GABRB3 variants lead to distinct clinical phenotypes in patients with developmental and epileptic encephalopathies," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Heng Liu & Dapeng Sun & Alexander Myasnikov & Marjorie Damian & Jean-Louis Baneres & Ji Sun & Cheng Zhang, 2021. "Structural basis of human ghrelin receptor signaling by ghrelin and the synthetic agonist ibutamoren," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    8. Vikram Dalal & Mark J. Arcario & John T. Petroff & Brandon K. Tan & Noah M. Dietzen & Michael J. Rau & James A. J. Fitzpatrick & Grace Brannigan & Wayland W. L. Cheng, 2024. "Lipid nanodisc scaffold and size alter the structure of a pentameric ligand-gated ion channel," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Vasyl Bondarenko & Marta M. Wells & Qiang Chen & Tommy S. Tillman & Kevin Singewald & Matthew J. Lawless & Joel Caporoso & Nicole Brandon & Jonathan A. Coleman & Sunil Saxena & Erik Lindahl & Yan Xu &, 2022. "Structures of highly flexible intracellular domain of human α7 nicotinic acetylcholine receptor," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Emma Rie Olander & Dieter Janzen & Carmen Villmann & Anders A Jensen, 2020. "Comparison of biophysical properties of α1β2 and α3β2 GABAA receptors in whole-cell patch-clamp electrophysiological recordings," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-13, June.
    11. Eric Gibbs & Emily Klemm & David Seiferth & Arvind Kumar & Serban L. Ilca & Philip C. Biggin & Sudha Chakrapani, 2023. "Conformational transitions and allosteric modulation in a heteromeric glycine receptor," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Yingfeng Tao & Xiaoliu Zhou & Leqiang Sun & Da Lin & Huaiyuan Cai & Xi Chen & Wei Zhou & Bing Yang & Zhe Hu & Jing Yu & Jing Zhang & Xiaoqing Yang & Fang Yang & Bang Shen & Wenbao Qi & Zhenfang Fu & J, 2023. "Highly efficient and robust π-FISH rainbow for multiplexed in situ detection of diverse biomolecules," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41734-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.