IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000618.html
   My bibliography  Save this article

Burst-Time-Dependent Plasticity Robustly Guides ON/OFF Segregation in the Lateral Geniculate Nucleus

Author

Listed:
  • Julijana Gjorgjieva
  • Taro Toyoizumi
  • Stephen J Eglen

Abstract

Spontaneous retinal activity (known as “waves”) remodels synaptic connectivity to the lateral geniculate nucleus (LGN) during development. Analysis of retinal waves recorded with multielectrode arrays in mouse suggested that a cue for the segregation of functionally distinct (ON and OFF) retinal ganglion cells (RGCs) in the LGN may be a desynchronization in their firing, where ON cells precede OFF cells by one second. Using the recorded retinal waves as input, with two different modeling approaches we explore timing-based plasticity rules for the evolution of synaptic weights to identify key features underlying ON/OFF segregation. First, we analytically derive a linear model for the evolution of ON and OFF weights, to understand how synaptic plasticity rules extract input firing properties to guide segregation. Second, we simulate postsynaptic activity with a nonlinear integrate-and-fire model to compare findings with the linear model. We find that spike-time-dependent plasticity, which modifies synaptic weights based on millisecond-long timing and order of pre- and postsynaptic spikes, fails to segregate ON and OFF retinal inputs in the absence of normalization. Implementing homeostatic mechanisms results in segregation, but only with carefully-tuned parameters. Furthermore, extending spike integration timescales to match the second-long input correlation timescales always leads to ON segregation because ON cells fire before OFF cells. We show that burst-time-dependent plasticity can robustly guide ON/OFF segregation in the LGN without normalization, by integrating pre- and postsynaptic bursts irrespective of their firing order and over second-long timescales. We predict that an LGN neuron will become ON- or OFF-responsive based on a local competition of the firing patterns of neighboring RGCs connecting to it. Finally, we demonstrate consistency with ON/OFF segregation in ferret, despite differences in the firing properties of retinal waves. Our model suggests that diverse input statistics of retinal waves can be robustly interpreted by a burst-based rule, which underlies retinogeniculate plasticity across different species.Author Summary: Many central targets in the brain are involved in the processing of information from the outside world. Before information about the visual scene reaches the visual cortex, it is preprocessed in the retina and the lateral geniculate nucleus. Connections which relay this information between the different brain targets are not determined at birth, but undergo a developmental period during which they are guided by molecular cues to the correct locations, and refined by activity to the appropriate numbers and strengths. Before the onset of vision, spontaneous activity generated within the retina plays an important role in the remodeling of these connections. In a computational and theoretical model, we used recorded spontaneous retinal activity patterns with several plasticity rules at the retinogeniculate synapse to identify the key properties underlying the selective refinement of connections. Our model shows robust behavior when applied to both mouse and ferret data, demonstrating that a common plasticity rule across species may underlie synaptic refinements in the visual system driven by spontaneous retinal activity.

Suggested Citation

  • Julijana Gjorgjieva & Taro Toyoizumi & Stephen J Eglen, 2009. "Burst-Time-Dependent Plasticity Robustly Guides ON/OFF Segregation in the Lateral Geniculate Nucleus," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-19, December.
  • Handle: RePEc:plo:pcbi00:1000618
    DOI: 10.1371/journal.pcbi.1000618
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000618
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000618&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000618?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Narayanan Kasthuri & Jeff W. Lichtman, 2003. "The role of neuronal identity in synaptic competition," Nature, Nature, vol. 424(6947), pages 426-430, July.
    2. Gina G. Turrigiano & Kenneth R. Leslie & Niraj S. Desai & Lana C. Rutherford & Sacha B. Nelson, 1998. "Activity-dependent scaling of quantal amplitude in neocortical neurons," Nature, Nature, vol. 391(6670), pages 892-896, February.
    3. Li I. Zhang & Huizhong W. Tao & Christine E. Holt & William A. Harris & Mu-ming Poo, 1998. "A critical window for cooperation and competition among developing retinotectal synapses," Nature, Nature, vol. 395(6697), pages 37-44, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Palmer & Adam Keane & Pulin Gong, 2017. "Learning and executing goal-directed choices by internally generated sequences in spiking neural circuits," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-23, July.
    2. Matteo Saponati & Martin Vinck, 2023. "Sequence anticipation and spike-timing-dependent plasticity emerge from a predictive learning rule," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Niranjan Chakravarthy & Shivkumar Sabesan & Kostas Tsakalis & Leon Iasemidis, 2009. "Controlling epileptic seizures in a neural mass model," Journal of Combinatorial Optimization, Springer, vol. 17(1), pages 98-116, January.
    4. Irit Nowik & Idan Segev & Shmuel Zamir, 2006. "Games in the Nervous System: The Game Motoneurons Play," Levine's Bibliography 321307000000000718, UCLA Department of Economics.
    5. Damien M O’Halloran, 2020. "Simulation model of CA1 pyramidal neurons reveal opposing roles for the Na+/Ca2+ exchange current and Ca2+-activated K+ current during spike-timing dependent synaptic plasticity," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-12, March.
    6. Yu, Haitao & Guo, Xinmeng & Wang, Jiang & Deng, Bin & Wei, Xile, 2015. "Spike coherence and synchronization on Newman–Watts small-world neuronal networks modulated by spike-timing-dependent plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 307-317.
    7. Sacha Jennifer van Albada & Moritz Helias & Markus Diesmann, 2015. "Scalability of Asynchronous Networks Is Limited by One-to-One Mapping between Effective Connectivity and Correlations," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-37, September.
    8. Dean J. Kareemo & Christina S. Winborn & Samantha S. Olah & Carley N. Miller & JungMin Kim & Chelsie A. Kadgien & Hannah S. Actor-Engel & Harrison J. Ramsay & Austin M. Ramsey & Jason Aoto & Matthew J, 2024. "Genetically encoded intrabody probes for labeling and manipulating AMPA-type glutamate receptors," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    9. Christian Keck & Cristina Savin & Jörg Lücke, 2012. "Feedforward Inhibition and Synaptic Scaling – Two Sides of the Same Coin?," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-15, March.
    10. Iris Reuveni & Sourav Ghosh & Edi Barkai, 2017. "Real Time Multiplicative Memory Amplification Mediated by Whole-Cell Scaling of Synaptic Response in Key Neurons," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-31, January.
    11. Jimok Kim & Richard W Tsien & Bradley E Alger, 2012. "An Improved Test for Detecting Multiplicative Homeostatic Synaptic Scaling," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-9, May.
    12. Christoph Hartmann & Andreea Lazar & Bernhard Nessler & Jochen Triesch, 2015. "Where’s the Noise? Key Features of Spontaneous Activity and Neural Variability Arise through Learning in a Deterministic Network," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-35, December.
    13. Mizusaki, Beatriz E.P. & Agnes, Everton J. & Erichsen, Rubem & Brunnet, Leonardo G., 2017. "Learning and retrieval behavior in recurrent neural networks with pre-synaptic dependent homeostatic plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 279-286.
    14. Giorgia Dellaferrera & Stanisław Woźniak & Giacomo Indiveri & Angeliki Pantazi & Evangelos Eleftheriou, 2022. "Introducing principles of synaptic integration in the optimization of deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Li, Tianyu & Wu, Yong & Yang, Lijian & Zhan, Xuan & Jia, Ya, 2022. "Spike-timing-dependent plasticity enhances chaotic resonance in small-world network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    16. Aseel Shomar & Lukas Geyrhofer & Noam E Ziv & Naama Brenner, 2017. "Cooperative stochastic binding and unbinding explain synaptic size dynamics and statistics," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-24, July.
    17. Henning Sprekeler & Christian Michaelis & Laurenz Wiskott, 2007. "Slowness: An Objective for Spike-Timing–Dependent Plasticity?," PLOS Computational Biology, Public Library of Science, vol. 3(6), pages 1-13, June.
    18. Angulo-Garcia, David & Torcini, Alessandro, 2014. "Stable chaos in fluctuation driven neural circuits," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 233-245.
    19. Georg Martius & Ralf Der & Nihat Ay, 2013. "Information Driven Self-Organization of Complex Robotic Behaviors," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-14, May.
    20. Tiziano D’Albis & Richard Kempter, 2017. "A single-cell spiking model for the origin of grid-cell patterns," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-41, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.