IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v418y2002i6895d10.1038_nature00854.html
   My bibliography  Save this article

Dendritic spikes as a mechanism for cooperative long-term potentiation

Author

Listed:
  • Nace L. Golding

    (Northwestern University
    University of Texas at Austin, Patterson Labs)

  • Nathan P. Staff

    (Northwestern University)

  • Nelson Spruston

    (Northwestern University)

Abstract

Strengthening of synaptic connections following coincident pre- and postsynaptic activity was proposed by Hebb as a cellular mechanism for learning1. Contemporary models assume that multiple synapses must act cooperatively to induce the postsynaptic activity required for hebbian synaptic plasticity2,3,4,5. One mechanism for the implementation of this cooperation is action potential firing, which begins in the axon, but which can influence synaptic potentiation following active backpropagation into dendrites6. Backpropagation is limited, however, and action potentials often fail to invade the most distal dendrites7,8,9,10. Here we show that long-term potentiation of synapses on the distal dendrites of hippocampal CA1 pyramidal neurons does require cooperative synaptic inputs, but does not require axonal action potential firing and backpropagation. Rather, locally generated and spatially restricted regenerative potentials (dendritic spikes) contribute to the postsynaptic depolarization and calcium entry necessary to trigger potentiation of distal synapses. We find that this mechanism can also function at proximal synapses, suggesting that dendritic spikes participate generally in a form of synaptic potentiation that does not require postsynaptic action potential firing in the axon.

Suggested Citation

  • Nace L. Golding & Nathan P. Staff & Nelson Spruston, 2002. "Dendritic spikes as a mechanism for cooperative long-term potentiation," Nature, Nature, vol. 418(6895), pages 326-331, July.
  • Handle: RePEc:nat:nature:v:418:y:2002:i:6895:d:10.1038_nature00854
    DOI: 10.1038/nature00854
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature00854
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature00854?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Saponati & Martin Vinck, 2023. "Sequence anticipation and spike-timing-dependent plasticity emerge from a predictive learning rule," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Balázs Ujfalussy & Tamás Kiss & Péter Érdi, 2009. "Parallel Computational Subunits in Dentate Granule Cells Generate Multiple Place Fields," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-16, September.
    3. Yonatan Loewenstein, 2008. "Robustness of Learning That Is Based on Covariance-Driven Synaptic Plasticity," PLOS Computational Biology, Public Library of Science, vol. 4(3), pages 1-10, March.
    4. Jung Ho Hyun & Kenichiro Nagahama & Ho Namkung & Neymi Mignocchi & Seung-Eon Roh & Patrick Hannan & Sarah Krüssel & Chuljung Kwak & Abigail McElroy & Bian Liu & Mingguang Cui & Seunghwan Lee & Dongmin, 2022. "Tagging active neurons by soma-targeted Cal-Light," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:418:y:2002:i:6895:d:10.1038_nature00854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.