IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40648-5.html
   My bibliography  Save this article

Improved figure of merit (z) at low temperatures for superior thermoelectric cooling in Mg3(Bi,Sb)2

Author

Listed:
  • Nan Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Hangtian Zhu

    (Chinese Academy of Sciences)

  • Guodong Li

    (Chinese Academy of Sciences)

  • Zhen Fan

    (Chinese Academy of Sciences)

  • Xiaofan Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jiawei Yang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Tianbo Lu

    (Chinese Academy of Sciences)

  • Qiulin Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xiaowei Wu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yuan Yao

    (Chinese Academy of Sciences)

  • Youguo Shi

    (Chinese Academy of Sciences)

  • Huaizhou Zhao

    (Chinese Academy of Sciences)

Abstract

The low-temperature thermoelectric performance of Bi-rich n-type Mg3(Bi,Sb)2 was limited by the electron transport scattering at grain boundaries, while removing grain boundaries and bulk crystal growth of Mg-based Zintl phases are challenging due to the volatilities of elemental reactants and their severe corrosions to crucibles at elevated temperatures. Herein, for the first time, we reported a facile growth of coarse-grained Mg3Bi2-xSbx crystals with an average grain size of ~800 μm, leading to a high carrier mobility of 210 cm2 · V−1 · s−1 and a high z of 2.9 × 10−3 K−1 at 300 K. A $$\Delta$$ Δ T of 68 K at Th of 300 K, and a power generation efficiency of 5.8% below 450 K have been demonstrated for Mg3Bi1.5Sb0.5- and Mg3Bi1.25Sb0.75-based thermoelectric modules, respectively, which represent the cutting-edge advances in the near-room temperature thermoelectrics. In addition, the developed grain growth approach can be potentially extended to broad Zintl phases and other Mg-based alloys and compounds.

Suggested Citation

  • Nan Chen & Hangtian Zhu & Guodong Li & Zhen Fan & Xiaofan Zhang & Jiawei Yang & Tianbo Lu & Qiulin Liu & Xiaowei Wu & Yuan Yao & Youguo Shi & Huaizhou Zhao, 2023. "Improved figure of merit (z) at low temperatures for superior thermoelectric cooling in Mg3(Bi,Sb)2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40648-5
    DOI: 10.1038/s41467-023-40648-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40648-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40648-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zihang Liu & Weihong Gao & Hironori Oshima & Kazuo Nagase & Chul-Ho Lee & Takao Mori, 2022. "Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Yanzhong Pei & Xiaoya Shi & Aaron LaLonde & Heng Wang & Lidong Chen & G. Jeffrey Snyder, 2011. "Convergence of electronic bands for high performance bulk thermoelectrics," Nature, Nature, vol. 473(7345), pages 66-69, May.
    3. Jiawei Zhang & Lirong Song & Steffen Hindborg Pedersen & Hao Yin & Le Thanh Hung & Bo Brummerstedt Iversen, 2017. "Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zihang Liu & Weihong Gao & Hironori Oshima & Kazuo Nagase & Chul-Ho Lee & Takao Mori, 2022. "Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Jingdan Lei & Kunpeng Zhao & Jincheng Liao & Shiqi Yang & Ziming Zhang & Tian-Ran Wei & Pengfei Qiu & Min Zhu & Lidong Chen & Xun Shi, 2024. "Approaching crystal’s limit of thermoelectrics by nano-sintering-aid at grain boundaries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Jing-Wei Li & Zhijia Han & Jincheng Yu & Hua-Lu Zhuang & Haihua Hu & Bin Su & Hezhang Li & Yilin Jiang & Lu Chen & Weishu Liu & Qiang Zheng & Jing-Feng Li, 2023. "Wide-temperature-range thermoelectric n-type Mg3(Sb,Bi)2 with high average and peak zT values," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Airan Li & Yuechu Wang & Yuzheng Li & Xinlei Yang & Pengfei Nan & Kai Liu & Binghui Ge & Chenguang Fu & Tiejun Zhu, 2024. "High performance magnesium-based plastic semiconductors for flexible thermoelectrics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Min Liu & Xinyue Zhang & Shuxian Zhang & Yanzhong Pei, 2024. "Ag2Se as a tougher alternative to n-type Bi2Te3 thermoelectrics," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    6. Liqing Xu & Yu Xiao & Sining Wang & Bo Cui & Di Wu & Xiangdong Ding & Li-Dong Zhao, 2022. "Dense dislocations enable high-performance PbSe thermoelectric at low-medium temperatures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Yingcai Zhu & Dongyang Wang & Tao Hong & Lei Hu & Toshiaki Ina & Shaoping Zhan & Bingchao Qin & Haonan Shi & Lizhong Su & Xiang Gao & Li-Dong Zhao, 2022. "Multiple valence bands convergence and strong phonon scattering lead to high thermoelectric performance in p-type PbSe," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Yilin Jiang & Jinfeng Dong & Hua-Lu Zhuang & Jincheng Yu & Bin Su & Hezhang Li & Jun Pei & Fu-Hua Sun & Min Zhou & Haihua Hu & Jing-Wei Li & Zhanran Han & Bo-Ping Zhang & Takao Mori & Jing-Feng Li, 2022. "Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Weng, Zebin & Liu, Furong & Zhu, Wenchao & Li, Yang & Xie, Changjun & Deng, Jian & Huang, Liang, 2022. "Performance improvement of variable-angle annular thermoelectric generators considering different boundary conditions," Applied Energy, Elsevier, vol. 306(PA).
    10. Yu Pan & Bin He & Toni Helm & Dong Chen & Walter Schnelle & Claudia Felser, 2022. "Ultrahigh transverse thermoelectric power factor in flexible Weyl semimetal WTe2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Degang Zhao & Di Wu & Lin Bo, 2017. "Enhanced Thermoelectric Properties of Cu 3 SbSe 4 Compounds via Gallium Doping," Energies, MDPI, vol. 10(10), pages 1-9, October.
    12. Decheng An & Senhao Zhang & Xin Zhai & Wutao Yang & Riga Wu & Huaide Zhang & Wenhao Fan & Wenxian Wang & Shaoping Chen & Oana Cojocaru-Mirédin & Xian-Ming Zhang & Matthias Wuttig & Yuan Yu, 2024. "Metavalently bonded tellurides: the essence of improved thermoelectric performance in elemental Te," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Zhifang Zhou & Yi Huang & Bin Wei & Yueyang Yang & Dehong Yu & Yunpeng Zheng & Dongsheng He & Wenyu Zhang & Mingchu Zou & Jin-Le Lan & Jiaqing He & Ce-Wen Nan & Yuan-Hua Lin, 2023. "Compositing effects for high thermoelectric performance of Cu2Se-based materials," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Marenco-Porto, Carlos A. & Fierro, José J. & Nieto-Londoño, César & Lopera, Leonardo & Escudero-Atehortua, Ana & Giraldo, Mauricio & Jouhara, Hussam, 2023. "Potential savings in the cement industry using waste heat recovery technologies," Energy, Elsevier, vol. 279(C).
    15. Zhang, A.B. & Wang, B.L. & Pang, D.D. & He, L.W. & Lou, J. & Wang, J. & Du, J.K., 2018. "Effects of interface layers on the performance of annular thermoelectric generators," Energy, Elsevier, vol. 147(C), pages 612-620.
    16. Eom, Yoomin & Wijethunge, Dimuthu & Park, Hwanjoo & Park, Sang Hyun & Kim, Woochul, 2017. "Flexible thermoelectric power generation system based on rigid inorganic bulk materials," Applied Energy, Elsevier, vol. 206(C), pages 649-656.
    17. Guo, Xinru & Zhang, Houcheng & Yuan, Jinliang & Wang, Jiatang & Zhao, Jiapei & Wang, Fu & Miao, He & Hou, Shujin, 2019. "Performance assessment of a combined system consisting of a high-temperature polymer electrolyte membrane fuel cell and a thermoelectric generator," Energy, Elsevier, vol. 179(C), pages 762-770.
    18. Ni, Dan & Song, Haijun & Chen, Yuanxun & Cai, Kefeng, 2019. "Free-standing highly conducting PEDOT films for flexible thermoelectric generator," Energy, Elsevier, vol. 170(C), pages 53-61.
    19. Hangtian Zhu & Wenjie Li & Amin Nozariasbmarz & Na Liu & Yu Zhang & Shashank Priya & Bed Poudel, 2023. "Half-Heusler alloys as emerging high power density thermoelectric cooling materials," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    20. Martín-González, Marisol & Caballero-Calero, O. & Díaz-Chao, P., 2013. "Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 288-305.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40648-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.