Cavity frequency-dependent theory for vibrational polariton chemistry
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-021-21610-9
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lachlan P. Lindoy & Arkajit Mandal & David R. Reichman, 2023. "Quantum dynamical effects of vibrational strong coupling in chemical reactivity," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Fabijan Pavošević & Robert L. Smith & Angel Rubio, 2023. "Computational study on the catalytic control of endo/exo Diels-Alder reactions by cavity quantum vacuum fluctuations," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
- Qi Yu & Joel M. Bowman, 2023. "Manipulating hydrogen bond dissociation rates and mechanisms in water dimer through vibrational strong coupling," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Connor K. Terry Weatherly & Justin Provazza & Emily A. Weiss & Roel Tempelaar, 2023. "Theory predicts UV/vis-to-IR photonic down conversion mediated by excited state vibrational polaritons," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Tao E. Li & Abraham Nitzan & Joseph E. Subotnik, 2022. "Energy-efficient pathway for selectively exciting solute molecules to high vibrational states via solvent vibration-polariton pumping," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Kaihong Sun & Raphael F. Ribeiro, 2024. "Theoretical formulation of chemical equilibrium under vibrational strong coupling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Sindhana Pannir-Sivajothi & Jorge A. Campos-Gonzalez-Angulo & Luis A. Martínez-Martínez & Shubham Sinha & Joel Yuen-Zhou, 2022. "Driving chemical reactions with polariton condensates," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Christian Schäfer & Johannes Flick & Enrico Ronca & Prineha Narang & Angel Rubio, 2022. "Shining light on the microscopic resonant mechanism responsible for cavity-mediated chemical reactivity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21610-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.