IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39461-x.html
   My bibliography  Save this article

Important role of endogenous microbial symbionts of fish gills in the challenging but highly biodiverse Amazonian blackwaters

Author

Listed:
  • Sylvain François-Étienne

    (Université Laval
    Gulf Fisheries Center)

  • Leroux Nicolas

    (Université Laval)

  • Normandeau Eric

    (Université Laval)

  • Custodio Jaqueline

    (Laboratório de Ecofisiologia e Evolução Molecular)

  • Mercier Pierre-Luc

    (Université Laval)

  • Bouslama Sidki

    (Université Laval)

  • Holland Aleicia

    (Albury/Wodonga Campus)

  • Barroso Danilo

    (Laboratório de Ecofisiologia e Evolução Molecular)

  • Val Adalberto Luis

    (Laboratório de Ecofisiologia e Evolução Molecular)

  • Derome Nicolas

    (Université Laval)

Abstract

Amazonian blackwaters are extremely biodiverse systems containing some of Earth’s most naturally acidic, dissolved organic carbon -rich and ion‐poor waters. Physiological adaptations of fish facing these ionoregulatory challenges are unresolved but could involve microbially-mediated processes. Here, we characterize the physiological response of 964 fish-microbe systems from four blackwater Teleost species along a natural hydrochemical gradient, using dual RNA-Seq and 16 S rRNA of gill samples. We find that host transcriptional responses to blackwaters are species-specific, but occasionally include the overexpression of Toll-receptors and integrins associated to interkingdom communication. Blackwater gill microbiomes are characterized by a transcriptionally-active betaproteobacterial cluster potentially interfering with epithelial permeability. We explore further blackwater fish-microbe interactions by analyzing transcriptomes of axenic zebrafish larvae exposed to sterile, non-sterile and inverted (non-native bacterioplankton) blackwater. We find that axenic zebrafish survive poorly when exposed to sterile/inverted blackwater. Overall, our results suggest a critical role for endogenous symbionts in blackwater fish physiology.

Suggested Citation

  • Sylvain François-Étienne & Leroux Nicolas & Normandeau Eric & Custodio Jaqueline & Mercier Pierre-Luc & Bouslama Sidki & Holland Aleicia & Barroso Danilo & Val Adalberto Luis & Derome Nicolas, 2023. "Important role of endogenous microbial symbionts of fish gills in the challenging but highly biodiverse Amazonian blackwaters," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39461-x
    DOI: 10.1038/s41467-023-39461-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39461-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39461-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel H Huson & Sina Beier & Isabell Flade & Anna Górska & Mohamed El-Hadidi & Suparna Mitra & Hans-Joachim Ruscheweyh & Rewati Tappu, 2016. "MEGAN Community Edition - Interactive Exploration and Analysis of Large-Scale Microbiome Sequencing Data," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-12, June.
    2. Yuuki Obata & Álvaro Castaño & Stefan Boeing & Ana Carina Bon-Frauches & Candice Fung & Todd Fallesen & Mercedes Gomez Agüero & Bahtiyar Yilmaz & Rita Lopes & Almaz Huseynova & Stuart Horswell & Mural, 2020. "Neuronal programming by microbiota regulates intestinal physiology," Nature, Nature, vol. 578(7794), pages 284-289, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Girija Kaushal & Monika Thakur & Amit Kumar Rai & Sudhir P. Singh, 2022. "A Comprehensive Metagenomic Analysis Framework Revealing Microbiome Profile and Potential for Hydrocarbon Degradation and Carbohydrate Metabolism in a Himalayan Artificial Lake," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
    2. Irina M. Velsko & Zandra Fagernäs & Monica Tromp & Stuart Bedford & Hallie R. Buckley & Geoffrey Clark & John Dudgeon & James Flexner & Jean-Christophe Galipaud & Rebecca Kinaston & Cecil M. Lewis & E, 2024. "Exploring the potential of dental calculus to shed light on past human migrations in Oceania," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Michael J. Tisza & Derek D. N. Smith & Andrew E. Clark & Jung-Ho Youn & Pavel P. Khil & John P. Dekker, 2023. "Roving methyltransferases generate a mosaic epigenetic landscape and influence evolution in Bacteroides fragilis group," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Eric Ros-Moner & Tamara Jiménez-Góngora & Luis Villar-Martín & Lana Vogrinec & Víctor M. González-Miguel & Denis Kutnjak & Ignacio Rubio-Somoza, 2024. "Conservation of molecular responses upon viral infection in the non-vascular plant Marchantia polymorpha," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. C C Lyman & G R Holyoak & K Meinkoth & X Wieneke & K A Chillemi & U DeSilva, 2019. "Canine endometrial and vaginal microbiomes reveal distinct and complex ecosystems," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-17, January.
    6. Yelin Han & Panpan Xu & Yuyang Wang & Wenliang Zhao & Junpeng Zhang & Shuyi Zhang & Jianwei Wang & Qi Jin & Zhiqiang Wu, 2023. "Panoramic analysis of coronaviruses carried by representative bat species in Southern China to better understand the coronavirus sphere," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    7. Tyler J. Murchie & Alistair J. Monteath & Matthew E. Mahony & George S. Long & Scott Cocker & Tara Sadoway & Emil Karpinski & Grant Zazula & Ross D. E. MacPhee & Duane Froese & Hendrik N. Poinar, 2021. "Collapse of the mammoth-steppe in central Yukon as revealed by ancient environmental DNA," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    8. Şuheda Reisoglu & Sevcan Aydin, 2023. "Bacteriophage and Their Potential Use in Bioaugmentation of Biological Wastewater Treatment Processes," Sustainability, MDPI, vol. 15(16), pages 1-13, August.
    9. Mohammed Y. Refai & Aala A. Abulfaraj & Israa J. Hakeem & Nehad A. Shaer & Mashael D. Alqahtani & Maryam M. Alomran & Nahaa M. Alotaibi & Hana S. Sonbol & Abdulrahman M. Alhashimi & Nouf S. Al-Abbas &, 2023. "Rhizobiome Signature and Its Alteration Due to Watering in the Wild Plant Moringa oleifera," Sustainability, MDPI, vol. 15(3), pages 1-25, February.
    10. Massimo Ferrara & Maria Federica Sgarro & Aristide Maggiolino & Sara Damiano & Francesco Iannaccone & Giuseppina Mulè & Pasquale De Palo, 2021. "Effect of Red Orange and Lemon Extract-Enriched Diet in Suckling Lambs’ Fecal Microbiota," Agriculture, MDPI, vol. 11(7), pages 1-11, June.
    11. Åshild J. Vågene & Tanvi P. Honap & Kelly M. Harkins & Michael S. Rosenberg & Karen Giffin & Felipe Cárdenas-Arroyo & Laura Paloma Leguizamón & Judith Arnett & Jane E. Buikstra & Alexander Herbig & Jo, 2022. "Geographically dispersed zoonotic tuberculosis in pre-contact South American human populations," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Anupam J. Das & Renuka Ravinath & Talambedu Usha & Biligi Sampgod Rohith & Hemavathy Ekambaram & Mothukapalli Krishnareddy Prasannakumar & Nijalingappa Ramesh & Sushil Kumar Middha, 2021. "Microbiome Analysis of the Rhizosphere from Wilt Infected Pomegranate Reveals Complex Adaptations in Fusarium—A Preliminary Study," Agriculture, MDPI, vol. 11(9), pages 1-17, August.
    13. Longjie Jiang & Jie Yang & Xiujuan Gao & Jiangfeng Huang & Qian Liu & Ling Fu, 2024. "In vivo imaging of vagal-induced myenteric plexus responses in gastrointestinal tract with an optical window," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Linda Armbrecht & Michael E. Weber & Maureen E. Raymo & Victoria L. Peck & Trevor Williams & Jonathan Warnock & Yuji Kato & Iván Hernández-Almeida & Frida Hoem & Brendan Reilly & Sidney Hemming & Ian , 2022. "Ancient marine sediment DNA reveals diatom transition in Antarctica," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Manal A. Tashkandi & Rewaa S. Jalal & Lina Baz & Mohammed Y. Refai & Ashwag Shami & Ruba Abdulrahman Ashy & Haneen W. Abuauf & Fatimah M. Alshehrei & Fawzia A. Alshubaily & Aminah A. Barqawi & Sahar A, 2022. "Functional Interpretation of Cross-Talking Pathways with Emphasis on Amino Acid Metabolism in Rhizosphere Microbiome of the Wild Plant Moringa oleifera," Agriculture, MDPI, vol. 12(11), pages 1-22, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39461-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.