IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i7p572-d579290.html
   My bibliography  Save this article

Effect of Red Orange and Lemon Extract-Enriched Diet in Suckling Lambs’ Fecal Microbiota

Author

Listed:
  • Massimo Ferrara

    (Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy)

  • Maria Federica Sgarro

    (Department of Veterinary Medicine, University “Aldo Moro” of Bari, 70010 Valenzano, Italy)

  • Aristide Maggiolino

    (Department of Veterinary Medicine, University “Aldo Moro” of Bari, 70010 Valenzano, Italy)

  • Sara Damiano

    (Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy
    Task Force of Microbiome Studies, University of Naples “Federico II”, 80137 Naples, Italy)

  • Francesco Iannaccone

    (Department of Agricultural and Environmental Science, University “Aldo Moro” of Bari, Via G. Amendola, 165/A, 70126 Bary, Italy)

  • Giuseppina Mulè

    (Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy)

  • Pasquale De Palo

    (Department of Veterinary Medicine, University “Aldo Moro” of Bari, 70010 Valenzano, Italy)

Abstract

Red orange and lemon extract (RLE) is an anthocyanins-rich dietary supplement that may influence gastrointestinal bacterial community in ruminants. The aim of the present study was to investigate the RLE effects on gut microbiota composition in lambs. Twenty-eight lambs were randomly divided into a control group (CON; n = 14) and an anthocyanin group (ANT; n = 14) and fed the same diet; additionally, only the ANT received 90 mg/kg live weight of RLE at day. After lamb slaughter (40 ± 1 days), fecal samples were collected from the rectum and stored at −20 °C until analysis. Analysis of fecal microbiome was carried out by metabarcoding analysis of 16S rRNA. After reads denoising, sequences were aligned against SILVA rRNA sequence database using MALT, and taxonomic binning was performed with MEGAN. A significant increase in Firmicutes and Bacteroidetes and a decrease in Proteobacteria and Actinobacteria was observed in ANT compared to CON. Moreover, an interesting increase of Lactobacillus and Bifidobacterium genera and a decrease in Escherichia coli and Salmonella species were detected in ANT compared to CON. Results recommend that anthocyanin supplementation in lamb diet is able to modulate positively gut microbiota and may inhibit the growth of some potential pathogenic microorganisms.

Suggested Citation

  • Massimo Ferrara & Maria Federica Sgarro & Aristide Maggiolino & Sara Damiano & Francesco Iannaccone & Giuseppina Mulè & Pasquale De Palo, 2021. "Effect of Red Orange and Lemon Extract-Enriched Diet in Suckling Lambs’ Fecal Microbiota," Agriculture, MDPI, vol. 11(7), pages 1-11, June.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:7:p:572-:d:579290
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/7/572/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/7/572/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel H Huson & Sina Beier & Isabell Flade & Anna Górska & Mohamed El-Hadidi & Suparna Mitra & Hans-Joachim Ruscheweyh & Rewati Tappu, 2016. "MEGAN Community Edition - Interactive Exploration and Analysis of Large-Scale Microbiome Sequencing Data," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Girija Kaushal & Monika Thakur & Amit Kumar Rai & Sudhir P. Singh, 2022. "A Comprehensive Metagenomic Analysis Framework Revealing Microbiome Profile and Potential for Hydrocarbon Degradation and Carbohydrate Metabolism in a Himalayan Artificial Lake," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
    2. Sylvain François-Étienne & Leroux Nicolas & Normandeau Eric & Custodio Jaqueline & Mercier Pierre-Luc & Bouslama Sidki & Holland Aleicia & Barroso Danilo & Val Adalberto Luis & Derome Nicolas, 2023. "Important role of endogenous microbial symbionts of fish gills in the challenging but highly biodiverse Amazonian blackwaters," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Michael J. Tisza & Derek D. N. Smith & Andrew E. Clark & Jung-Ho Youn & Pavel P. Khil & John P. Dekker, 2023. "Roving methyltransferases generate a mosaic epigenetic landscape and influence evolution in Bacteroides fragilis group," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. C C Lyman & G R Holyoak & K Meinkoth & X Wieneke & K A Chillemi & U DeSilva, 2019. "Canine endometrial and vaginal microbiomes reveal distinct and complex ecosystems," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-17, January.
    5. Yelin Han & Panpan Xu & Yuyang Wang & Wenliang Zhao & Junpeng Zhang & Shuyi Zhang & Jianwei Wang & Qi Jin & Zhiqiang Wu, 2023. "Panoramic analysis of coronaviruses carried by representative bat species in Southern China to better understand the coronavirus sphere," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    6. Tyler J. Murchie & Alistair J. Monteath & Matthew E. Mahony & George S. Long & Scott Cocker & Tara Sadoway & Emil Karpinski & Grant Zazula & Ross D. E. MacPhee & Duane Froese & Hendrik N. Poinar, 2021. "Collapse of the mammoth-steppe in central Yukon as revealed by ancient environmental DNA," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    7. Şuheda Reisoglu & Sevcan Aydin, 2023. "Bacteriophage and Their Potential Use in Bioaugmentation of Biological Wastewater Treatment Processes," Sustainability, MDPI, vol. 15(16), pages 1-13, August.
    8. Mohammed Y. Refai & Aala A. Abulfaraj & Israa J. Hakeem & Nehad A. Shaer & Mashael D. Alqahtani & Maryam M. Alomran & Nahaa M. Alotaibi & Hana S. Sonbol & Abdulrahman M. Alhashimi & Nouf S. Al-Abbas &, 2023. "Rhizobiome Signature and Its Alteration Due to Watering in the Wild Plant Moringa oleifera," Sustainability, MDPI, vol. 15(3), pages 1-25, February.
    9. Åshild J. Vågene & Tanvi P. Honap & Kelly M. Harkins & Michael S. Rosenberg & Karen Giffin & Felipe Cárdenas-Arroyo & Laura Paloma Leguizamón & Judith Arnett & Jane E. Buikstra & Alexander Herbig & Jo, 2022. "Geographically dispersed zoonotic tuberculosis in pre-contact South American human populations," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Anupam J. Das & Renuka Ravinath & Talambedu Usha & Biligi Sampgod Rohith & Hemavathy Ekambaram & Mothukapalli Krishnareddy Prasannakumar & Nijalingappa Ramesh & Sushil Kumar Middha, 2021. "Microbiome Analysis of the Rhizosphere from Wilt Infected Pomegranate Reveals Complex Adaptations in Fusarium—A Preliminary Study," Agriculture, MDPI, vol. 11(9), pages 1-17, August.
    11. Linda Armbrecht & Michael E. Weber & Maureen E. Raymo & Victoria L. Peck & Trevor Williams & Jonathan Warnock & Yuji Kato & Iván Hernández-Almeida & Frida Hoem & Brendan Reilly & Sidney Hemming & Ian , 2022. "Ancient marine sediment DNA reveals diatom transition in Antarctica," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Manal A. Tashkandi & Rewaa S. Jalal & Lina Baz & Mohammed Y. Refai & Ashwag Shami & Ruba Abdulrahman Ashy & Haneen W. Abuauf & Fatimah M. Alshehrei & Fawzia A. Alshubaily & Aminah A. Barqawi & Sahar A, 2022. "Functional Interpretation of Cross-Talking Pathways with Emphasis on Amino Acid Metabolism in Rhizosphere Microbiome of the Wild Plant Moringa oleifera," Agriculture, MDPI, vol. 12(11), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:7:p:572-:d:579290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.