Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries
Author
Abstract
Suggested Citation
DOI: 10.1038/s41560-020-0601-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhuo Li & Rui Yu & Suting Weng & Qinghua Zhang & Xuefeng Wang & Xin Guo, 2023. "Tailoring polymer electrolyte ionic conductivity for production of low- temperature operating quasi-all-solid-state lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Chichu Qin & Dong Wang & Yumin Liu & Pengkun Yang & Tian Xie & Lu Huang & Haiyan Zou & Guanwu Li & Yingpeng Wu, 2021. "Tribo-electrochemistry induced artificial solid electrolyte interface by self-catalysis," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
- Jiyu Zhang & Yongliang Yan & Xin Wang & Yanyan Cui & Zhengfeng Zhang & Sen Wang & Zhengkun Xie & Pengfei Yan & Weihua Chen, 2023. "Bridging multiscale interfaces for developing ionically conductive high-voltage iron sulfate-containing sodium-based battery positive electrodes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Xu Yang & Bao Zhang & Yao Tian & Yao Wang & Zhiqiang Fu & Dong Zhou & Hao Liu & Feiyu Kang & Baohua Li & Chunsheng Wang & Guoxiu Wang, 2023. "Electrolyte design principles for developing quasi-solid-state rechargeable halide-ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Meilong Wang & Luming Yin & Mengting Zheng & Xiaowei Liu & Chao Yang & Wenxi Hu & Jingjing Xie & Ruitao Sun & Jin Han & Ya You & Jun Lu, 2024. "Temperature-responsive solvation enabled by dipole-dipole interactions towards wide-temperature sodium-ion batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Guoyu Qian & Yiwei Li & Haibiao Chen & Lin Xie & Tongchao Liu & Ni Yang & Yongli Song & Cong Lin & Junfang Cheng & Naotoshi Nakashima & Meng Zhang & Zikun Li & Wenguang Zhao & Xiangjie Yang & Hai Lin , 2023. "Revealing the aging process of solid electrolyte interphase on SiOx anode," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:5:y:2020:i:5:d:10.1038_s41560-020-0601-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.