IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39304-9.html
   My bibliography  Save this article

Imaging the electron charge density in monolayer MoS2 at the Ångstrom scale

Author

Listed:
  • Joel Martis

    (Stanford University)

  • Sandhya Susarla

    (Lawrence Berkeley National Laboratory
    Lawrence Berkeley National Laboratory
    Arizona State University)

  • Archith Rayabharam

    (University of Illinois at Urbana-Champaign)

  • Cong Su

    (University of California Berkeley
    University of California Berkeley
    Kavli Energy NanoScience Institute, University of California Berkeley)

  • Timothy Paule

    (University of California Berkeley
    University of California Berkeley
    Kavli Energy NanoScience Institute, University of California Berkeley)

  • Philipp Pelz

    (Lawrence Berkeley National Laboratory
    Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), Department of Materials Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU))

  • Cassandra Huff

    (Stanford University)

  • Xintong Xu

    (Stanford University)

  • Hao-Kun Li

    (Stanford University)

  • Marc Jaikissoon

    (Stanford University)

  • Victoria Chen

    (Stanford University)

  • Eric Pop

    (Stanford University)

  • Krishna Saraswat

    (Stanford University)

  • Alex Zettl

    (University of California Berkeley
    University of California Berkeley
    Kavli Energy NanoScience Institute, University of California Berkeley)

  • Narayana R. Aluru

    (The University of Texas at Austin)

  • Ramamoorthy Ramesh

    (University of California Berkeley
    University of California Berkeley)

  • Peter Ercius

    (Lawrence Berkeley National Laboratory)

  • Arun Majumdar

    (Stanford University)

Abstract

Four-dimensional scanning transmission electron microscopy (4D-STEM) has recently gained widespread attention for its ability to image atomic electric fields with sub-Ångstrom spatial resolution. These electric field maps represent the integrated effect of the nucleus, core electrons and valence electrons, and separating their contributions is non-trivial. In this paper, we utilized simultaneously acquired 4D-STEM center of mass (CoM) images and annular dark field (ADF) images to determine the projected electron charge density in monolayer MoS2. We evaluate the contributions of both the core electrons and the valence electrons to the derived electron charge density; however, due to blurring by the probe shape, the valence electron contribution forms a nearly featureless background while most of the spatial modulation comes from the core electrons. Our findings highlight the importance of probe shape in interpreting charge densities derived from 4D-STEM and the need for smaller electron probes.

Suggested Citation

  • Joel Martis & Sandhya Susarla & Archith Rayabharam & Cong Su & Timothy Paule & Philipp Pelz & Cassandra Huff & Xintong Xu & Hao-Kun Li & Marc Jaikissoon & Victoria Chen & Eric Pop & Krishna Saraswat &, 2023. "Imaging the electron charge density in monolayer MoS2 at the Ångstrom scale," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39304-9
    DOI: 10.1038/s41467-023-39304-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39304-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39304-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yi Jiang & Zhen Chen & Yimo Han & Pratiti Deb & Hui Gao & Saien Xie & Prafull Purohit & Mark W. Tate & Jiwoong Park & Sol M. Gruner & Veit Elser & David A. Muller, 2018. "Electron ptychography of 2D materials to deep sub-ångström resolution," Nature, Nature, vol. 559(7714), pages 343-349, July.
    2. Timm Bredtmann & Misha Ivanov & Gopal Dixit, 2014. "X-ray imaging of chemically active valence electrons during a pericyclic reaction," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    3. Knut Müller & Florian F. Krause & Armand Béché & Marco Schowalter & Vincent Galioit & Stefan Löffler & Johan Verbeeck & Josef Zweck & Peter Schattschneider & Andreas Rosenauer, 2014. "Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    4. Shiang Fang & Yi Wen & Christopher S. Allen & Colin Ophus & Grace G. D. Han & Angus I. Kirkland & Efthimios Kaxiras & Jamie H. Warner, 2019. "Atomic electrostatic maps of 1D channels in 2D semiconductors using 4D scanning transmission electron microscopy," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    5. Zhen Chen & Michal Odstrcil & Yi Jiang & Yimo Han & Ming-Hui Chiu & Lain-Jong Li & David A. Muller, 2020. "Mixed-state electron ptychography enables sub-angstrom resolution imaging with picometer precision at low dose," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philipp M. Pelz & Sinéad M. Griffin & Scott Stonemeyer & Derek Popple & Hannah DeVyldere & Peter Ercius & Alex Zettl & Mary C. Scott & Colin Ophus, 2023. "Solving complex nanostructures with ptychographic atomic electron tomography," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Xudong Pei & Liqi Zhou & Chen Huang & Mark Boyce & Judy S. Kim & Emanuela Liberti & Yiming Hu & Takeo Sasaki & Peter D. Nellist & Peijun Zhang & David I. Stuart & Angus I. Kirkland & Peng Wang, 2023. "Cryogenic electron ptychographic single particle analysis with wide bandwidth information transfer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Xinxing Peng & Philipp M. Pelz & Qiubo Zhang & Peican Chen & Lingyun Cao & Yaqian Zhang & Hong-Gang Liao & Haimei Zheng & Cheng Wang & Shi-Gang Sun & Mary C. Scott, 2022. "Observation of formation and local structures of metal-organic layers via complementary electron microscopy techniques," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Zhongqiang Chen & Hongsong Qiu & Xinjuan Cheng & Jizhe Cui & Zuanming Jin & Da Tian & Xu Zhang & Kankan Xu & Ruxin Liu & Wei Niu & Liqi Zhou & Tianyu Qiu & Yequan Chen & Caihong Zhang & Xiaoxiang Xi &, 2024. "Defect-induced helicity dependent terahertz emission in Dirac semimetal PtTe2 thin films," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Jie Xu & Xiong-Xiong Xue & Gonglei Shao & Changfei Jing & Sheng Dai & Kun He & Peipei Jia & Shun Wang & Yifei Yuan & Jun Luo & Jun Lu, 2023. "Atomic-level polarization in electric fields of defects for electrocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Benedikt Diederichs & Ziria Herdegen & Achim Strauch & Frank Filbir & Knut Müller-Caspary, 2024. "Exact inversion of partially coherent dynamical electron scattering for picometric structure retrieval," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Zhiyuan Ding & Si Gao & Weina Fang & Chen Huang & Liqi Zhou & Xudong Pei & Xiaoguo Liu & Xiaoqing Pan & Chunhai Fan & Angus I. Kirkland & Peng Wang, 2022. "Three-dimensional electron ptychography of organic–inorganic hybrid nanostructures," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Chaehwa Jeong & Juhyeok Lee & Hyesung Jo & Jaewhan Oh & Hionsuck Baik & Kyoung-June Go & Junwoo Son & Si-Young Choi & Sergey Prosandeev & Laurent Bellaiche & Yongsoo Yang, 2024. "Revealing the three-dimensional arrangement of polar topology in nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Anakha V. Babu & Tao Zhou & Saugat Kandel & Tekin Bicer & Zhengchun Liu & William Judge & Daniel J. Ching & Yi Jiang & Sinisa Veseli & Steven Henke & Ryan Chard & Yudong Yao & Ekaterina Sirazitdinova , 2023. "Deep learning at the edge enables real-time streaming ptychographic imaging," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Jonathan Schwartz & Zichao Wendy Di & Yi Jiang & Jason Manassa & Jacob Pietryga & Yiwen Qian & Min Gee Cho & Jonathan L. Rowell & Huihuo Zheng & Richard D. Robinson & Junsi Gu & Alexey Kirilin & Steve, 2024. "Imaging 3D chemistry at 1 nm resolution with fused multi-modal electron tomography," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39304-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.