IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms6589.html
   My bibliography  Save this article

X-ray imaging of chemically active valence electrons during a pericyclic reaction

Author

Listed:
  • Timm Bredtmann

    (Max Born Institute, Max-Born-Strasse 2A, 12489 Berlin, Germany)

  • Misha Ivanov

    (Max Born Institute, Max-Born-Strasse 2A, 12489 Berlin, Germany
    Blackett Laboratory, Imperial College London)

  • Gopal Dixit

    (Max Born Institute, Max-Born-Strasse 2A, 12489 Berlin, Germany)

Abstract

Time-resolved imaging of chemically active valence electron densities is a long-sought goal, as these electrons dictate the course of chemical reactions. However, X-ray scattering is always dominated by the core and inert valence electrons, making time-resolved X-ray imaging of chemically active valence electron densities extremely challenging. Here we demonstrate an effective and robust method, which emphasizes the information encoded in weakly scattered photons, to image chemically active valence electron densities. The degenerate Cope rearrangement of semibullvalene, a pericyclic reaction, is used as an example to visually illustrate our approach. Our work also provides experimental access to the long-standing problem of synchronous versus asynchronous bond formation and breaking during pericyclic reactions.

Suggested Citation

  • Timm Bredtmann & Misha Ivanov & Gopal Dixit, 2014. "X-ray imaging of chemically active valence electrons during a pericyclic reaction," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6589
    DOI: 10.1038/ncomms6589
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6589
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6589?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joel Martis & Sandhya Susarla & Archith Rayabharam & Cong Su & Timothy Paule & Philipp Pelz & Cassandra Huff & Xintong Xu & Hao-Kun Li & Marc Jaikissoon & Victoria Chen & Eric Pop & Krishna Saraswat &, 2023. "Imaging the electron charge density in monolayer MoS2 at the Ã…ngstrom scale," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.