IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39116-x.html
   My bibliography  Save this article

Enhanced spin Seebeck effect via oxygen manipulation

Author

Listed:
  • Jeong-Mok Kim

    (KAIST)

  • Seok-Jong Kim

    (KAIST
    KAIST)

  • Min-Gu Kang

    (KAIST
    ETH Zurich)

  • Jong-Guk Choi

    (KAIST)

  • Soogil Lee

    (KAIST)

  • Jaehyeon Park

    (KAIST)

  • Cao Phuoc

    (Chungnam National University)

  • Kyoung-Whan Kim

    (Korea Institute of Science and Technology)

  • Kab-Jin Kim

    (KAIST)

  • Jong-Ryul Jeong

    (Chungnam National University)

  • Kyung-Jin Lee

    (KAIST)

  • Byong-Guk Park

    (KAIST)

Abstract

Spin Seebeck effect (SSE) refers to the generation of an electric voltage transverse to a temperature gradient via a magnon current. SSE offers the potential for efficient thermoelectric devices because the transverse geometry of SSE enables to utilize waste heat from a large-area source by greatly simplifying the device structure. However, SSE suffers from a low thermoelectric conversion efficiency that must be improved for widespread application. Here we show that the SSE substantially enhances by oxidizing a ferromagnet in normal metal/ferromagnet/oxide structures. In W/CoFeB/AlOx structures, voltage-induced interfacial oxidation of CoFeB modifies the SSE, resulting in the enhancement of thermoelectric signal by an order of magnitude. We describe a mechanism for the enhancement that results from a reduced exchange interaction of the oxidized region of ferromagnet, which in turn increases a temperature difference between magnons in the ferromagnet and electrons in the normal metal and/or a gradient of magnon chemical potential in the ferromagnet. Our result will invigorate research for thermoelectric conversion by suggesting a promising way of improving the SSE efficiency.

Suggested Citation

  • Jeong-Mok Kim & Seok-Jong Kim & Min-Gu Kang & Jong-Guk Choi & Soogil Lee & Jaehyeon Park & Cao Phuoc & Kyoung-Whan Kim & Kab-Jin Kim & Jong-Ryul Jeong & Kyung-Jin Lee & Byong-Guk Park, 2023. "Enhanced spin Seebeck effect via oxygen manipulation," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39116-x
    DOI: 10.1038/s41467-023-39116-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39116-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39116-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. C. M. Jaworski & R. C. Myers & E. Johnston-Halperin & J. P. Heremans, 2012. "Giant spin Seebeck effect in a non-magnetic material," Nature, Nature, vol. 487(7406), pages 210-213, July.
    2. Hamid Elsheikh, Mohamed & Shnawah, Dhafer Abdulameer & Sabri, Mohd Faizul Mohd & Said, Suhana Binti Mohd & Haji Hassan, Masjuki & Ali Bashir, Mohamed Bashir & Mohamad, Mahazani, 2014. "A review on thermoelectric renewable energy: Principle parameters that affect their performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 337-355.
    3. K. Uchida & S. Takahashi & K. Harii & J. Ieda & W. Koshibae & K. Ando & S. Maekawa & E. Saitoh, 2008. "Observation of the spin Seebeck effect," Nature, Nature, vol. 455(7214), pages 778-781, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangyi Chen & Shaomian Qi & Jianqiao Liu & Di Chen & Jiongjie Wang & Shili Yan & Yu Zhang & Shimin Cao & Ming Lu & Shibing Tian & Kangyao Chen & Peng Yu & Zheng Liu & X. C. Xie & Jiang Xiao & Ryuichi, 2021. "Electrically switchable van der Waals magnon valves," Nature Communications, Nature, vol. 12(1), pages 1-5, December.
    2. Li, Guo-neng & Zhang, Shuai & Zheng, You-qu & Zhu, Ling-yun & Guo, Wen-wen, 2018. "Experimental study on a stove-powered thermoelectric generator (STEG) with self starting fan cooling," Renewable Energy, Elsevier, vol. 121(C), pages 502-512.
    3. Jang, Eunhwa & Banerjee, Priyanshu & Huang, Jiyuan & Madan, Deepa, 2021. "High performance scalable and cost-effective thermoelectric devices fabricated using energy efficient methods and naturally occuring materials," Applied Energy, Elsevier, vol. 294(C).
    4. Makki, Adham & Omer, Siddig & Sabir, Hisham, 2015. "Advancements in hybrid photovoltaic systems for enhanced solar cells performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 658-684.
    5. Enescu, Diana & Virjoghe, Elena Otilia, 2014. "A review on thermoelectric cooling parameters and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 903-916.
    6. Wang, Cun-Hai & Chen, Hao & Jiang, Ze-Yi & Zhang, Xin-Xin & Wang, Fu-Qiang, 2023. "Modelling and performance evaluation of a novel passive thermoelectric system based on radiative cooling and solar heating for 24-hour power-generation," Applied Energy, Elsevier, vol. 331(C).
    7. Yong Xu & Fan Zhang & Albert Fert & Henri-Yves Jaffres & Yongshan Liu & Renyou Xu & Yuhao Jiang & Houyi Cheng & Weisheng Zhao, 2024. "Orbitronics: light-induced orbital currents in Ni studied by terahertz emission experiments," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    8. Hongru Wang & Jing Meng & Jianjun Lin & Bin Xu & Hai Ma & Yucheng Kan & Rui Chen & Lujun Huang & Ye Chen & Fangyu Yue & Chun-Gang Duan & Junhao Chu & Lin Sun, 2024. "Origin of the light-induced spin currents in heavy metal/magnetic insulator bilayers," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Cai, Yang & Zhang, Dong-Dong & Liu, Di & Zhao, Fu-Yun & Wang, Han-Qing, 2019. "Air source thermoelectric heat pump for simultaneous cold air delivery and hot water supply: Full modeling and performance evaluation," Renewable Energy, Elsevier, vol. 130(C), pages 968-981.
    10. Kwan, Trevor Hocksun & Wu, Xiaofeng & Yao, Qinghe, 2018. "Multi-objective genetic optimization of the thermoelectric system for thermal management of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 217(C), pages 314-327.
    11. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    12. Bosen Qian & Fei Ren, 2017. "Transverse Thermoelectricity in Fibrous Composite Materials," Energies, MDPI, vol. 10(7), pages 1-11, July.
    13. Kishore, Ravi Anant & Priya, Shashank, 2018. "A review on design and performance of thermomagnetic devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 33-44.
    14. Montero, Francisco J. & Kumar, Ramesh & Lamba, Ravita & Escobar, Rodrigo A. & Vashishtha, Manish & Upadhyaya, Sushant & Guzmán, Amador M., 2022. "Hybrid photovoltaic-thermoelectric system: Economic feasibility analysis in the Atacama Desert, Chile," Energy, Elsevier, vol. 239(PB).
    15. Kim, Deok Han & Park, Byung Ho & Kwon, Kilsung & Li, Longnan & Kim, Daejoong, 2017. "Modeling of power generation with thermolytic reverse electrodialysis for low-grade waste heat recovery," Applied Energy, Elsevier, vol. 189(C), pages 201-210.
    16. Dey, Abhijit & Bajpai, Om Prakash & Sikder, Arun K. & Chattopadhyay, Santanu & Shafeeuulla Khan, Md Abdul, 2016. "Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: A proficient move towards waste energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 653-671.
    17. Liu, Shuang & Hu, Bingkun & Liu, Dawei & Li, Fu & Li, Jing-Feng & Li, Bo & Li, Liangliang & Lin, Yuan-Hua & Nan, Ce-Wen, 2018. "Micro-thermoelectric generators based on through glass pillars with high output voltage enabled by large temperature difference," Applied Energy, Elsevier, vol. 225(C), pages 600-610.
    18. Oswaldo Hideo Ando Junior & Nelson H. Calderon & Samara Silva De Souza, 2018. "Characterization of a Thermoelectric Generator (TEG) System for Waste Heat Recovery," Energies, MDPI, vol. 11(6), pages 1-13, June.
    19. Xu, Bin & Rathod, Dhruvang & Yebi, Adamu & Filipi, Zoran & Onori, Simona & Hoffman, Mark, 2019. "A comprehensive review of organic rankine cycle waste heat recovery systems in heavy-duty diesel engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 145-170.
    20. Fitriani, & Ovik, R. & Long, B.D. & Barma, M.C. & Riaz, M. & Sabri, M.F.M. & Said, S.M. & Saidur, R., 2016. "A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 635-659.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39116-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.