IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48710-6.html
   My bibliography  Save this article

Origin of the light-induced spin currents in heavy metal/magnetic insulator bilayers

Author

Listed:
  • Hongru Wang

    (East China Normal University)

  • Jing Meng

    (East China Normal University)

  • Jianjun Lin

    (East China Normal University)

  • Bin Xu

    (East China Normal University)

  • Hai Ma

    (East China Normal University)

  • Yucheng Kan

    (East China Normal University)

  • Rui Chen

    (East China Normal University)

  • Lujun Huang

    (East China Normal University)

  • Ye Chen

    (East China Normal University)

  • Fangyu Yue

    (East China Normal University)

  • Chun-Gang Duan

    (East China Normal University)

  • Junhao Chu

    (East China Normal University
    Fudan University)

  • Lin Sun

    (East China Normal University)

Abstract

Light-induced spin currents with the faster response is essential for the more efficient information transmission and processing. Herein, we systematically explore the effect of light illumination energy and direction on the light-induced spin currents in the W/Y3Fe5O12 heterojunction. Light-induced spin currents can be clearly categorized into two types. One is excited by the low light intensity, which mainly involves the photo-generated spin current from spin photovoltaic effect. The other is caused by the high light intensity, which is the light-thermally induced spin current and mainly excited by spin Seebeck effect. Under low light-intensity illumination, light-thermally induced temperature gradient is very small so that spin Seebeck effect can be neglected. Furthermore, the mechanism on spin photovoltaic effect is fully elucidated, where the photo-generated spin current in Y3Fe5O12 mainly originates from the process of spin precession induced by photons. These findings provide some deep insights into the origin of light-induced spin current.

Suggested Citation

  • Hongru Wang & Jing Meng & Jianjun Lin & Bin Xu & Hai Ma & Yucheng Kan & Rui Chen & Lujun Huang & Ye Chen & Fangyu Yue & Chun-Gang Duan & Junhao Chu & Lin Sun, 2024. "Origin of the light-induced spin currents in heavy metal/magnetic insulator bilayers," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48710-6
    DOI: 10.1038/s41467-024-48710-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48710-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48710-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peng Li & Tao Liu & Houchen Chang & Alan Kalitsov & Wei Zhang & Gyorgy Csaba & Wei Li & Daniel Richardson & August DeMann & Gaurab Rimal & Himadri Dey & J. S. Jiang & Wolfgang Porod & Stuart B. Field , 2016. "Spin–orbit torque-assisted switching in magnetic insulator thin films with perpendicular magnetic anisotropy," Nature Communications, Nature, vol. 7(1), pages 1-8, November.
    2. Haowei Xu & Hua Wang & Jian Zhou & Ju Li, 2021. "Pure spin photocurrent in non-centrosymmetric crystals: bulk spin photovoltaic effect," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Y. Kajiwara & K. Harii & S. Takahashi & J. Ohe & K. Uchida & M. Mizuguchi & H. Umezawa & H. Kawai & K. Ando & K. Takanashi & S. Maekawa & E. Saitoh, 2010. "Transmission of electrical signals by spin-wave interconversion in a magnetic insulator," Nature, Nature, vol. 464(7286), pages 262-266, March.
    4. K. Uchida & S. Takahashi & K. Harii & J. Ieda & W. Koshibae & K. Ando & S. Maekawa & E. Saitoh, 2008. "Observation of the spin Seebeck effect," Nature, Nature, vol. 455(7214), pages 778-781, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Li & Zhitao Zhang & Chen Liu & Dongxing Zheng & Bin Fang & Chenhui Zhang & Aitian Chen & Yinchang Ma & Chunmei Wang & Haoliang Liu & Ka Shen & Aurélien Manchon & John Q. Xiao & Ziqiang Qiu & Can-M, 2024. "Reconfigurable spin current transmission and magnon–magnon coupling in hybrid ferrimagnetic insulators," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Guangyi Chen & Shaomian Qi & Jianqiao Liu & Di Chen & Jiongjie Wang & Shili Yan & Yu Zhang & Shimin Cao & Ming Lu & Shibing Tian & Kangyao Chen & Peng Yu & Zheng Liu & X. C. Xie & Jiang Xiao & Ryuichi, 2021. "Electrically switchable van der Waals magnon valves," Nature Communications, Nature, vol. 12(1), pages 1-5, December.
    3. Jianyu Zhang & Mingfeng Chen & Jilei Chen & Kei Yamamoto & Hanchen Wang & Mohammad Hamdi & Yuanwei Sun & Kai Wagner & Wenqing He & Yu Zhang & Ji Ma & Peng Gao & Xiufeng Han & Dapeng Yu & Patrick Malet, 2021. "Long decay length of magnon-polarons in BiFeO3/La0.67Sr0.33MnO3 heterostructures," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Jeong-Mok Kim & Seok-Jong Kim & Min-Gu Kang & Jong-Guk Choi & Soogil Lee & Jaehyeon Park & Cao Phuoc & Kyoung-Whan Kim & Kab-Jin Kim & Jong-Ryul Jeong & Kyung-Jin Lee & Byong-Guk Park, 2023. "Enhanced spin Seebeck effect via oxygen manipulation," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    5. Yong Xu & Fan Zhang & Albert Fert & Henri-Yves Jaffres & Yongshan Liu & Renyou Xu & Yuhao Jiang & Houyi Cheng & Weisheng Zhao, 2024. "Orbitronics: light-induced orbital currents in Ni studied by terahertz emission experiments," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Ando Junior, O.H. & Maran, A.L.O. & Henao, N.C., 2018. "A review of the development and applications of thermoelectric microgenerators for energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 376-393.
    7. Yuan, Dongdong & Jiang, Wei & Sha, Aimin & Xiao, Jingjing & Wu, Wangjie & Wang, Teng, 2023. "Technology method and functional characteristics of road thermoelectric generator system based on Seebeck effect," Applied Energy, Elsevier, vol. 331(C).
    8. Man Yang & Liang Sun & Yulun Zeng & Jun Cheng & Kang He & Xi Yang & Ziqiang Wang & Longqian Yu & Heng Niu & Tongzhou Ji & Gong Chen & Bingfeng Miao & Xiangrong Wang & Haifeng Ding, 2024. "Highly efficient field-free switching of perpendicular yttrium iron garnet with collinear spin current," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    9. Oswaldo Hideo Ando Junior & Nelson H. Calderon & Samara Silva De Souza, 2018. "Characterization of a Thermoelectric Generator (TEG) System for Waste Heat Recovery," Energies, MDPI, vol. 11(6), pages 1-13, June.
    10. Yuan, Dongdong & Jiang, Wei & Sha, Aimin & Xiao, Jingjing & Shan, Jinhuan & Wang, Di, 2022. "Energy output and pavement performance of road thermoelectric generator system," Renewable Energy, Elsevier, vol. 201(P2), pages 22-33.
    11. Shaomian Qi & Di Chen & Kangyao Chen & Jianqiao Liu & Guangyi Chen & Bingcheng Luo & Hang Cui & Linhao Jia & Jiankun Li & Miaoling Huang & Yuanjun Song & Shiyi Han & Lianming Tong & Peng Yu & Yi Liu &, 2023. "Giant electrically tunable magnon transport anisotropy in a van der Waals antiferromagnetic insulator," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Ruofan Li & Lauren J. Riddiford & Yahong Chai & Minyi Dai & Hai Zhong & Bo Li & Peng Li & Di Yi & Yuejie Zhang & David A. Broadway & Adrien E. E. Dubois & Patrick Maletinsky & Jiamian Hu & Yuri Suzuki, 2023. "A puzzling insensitivity of magnon spin diffusion to the presence of 180-degree domain walls," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    13. Kun Xu & Ting Lin & Yiheng Rao & Ziqiang Wang & Qinghui Yang & Huaiwu Zhang & Jing Zhu, 2022. "Direct investigation of the atomic structure and decreased magnetism of antiphase boundaries in garnet," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Sergey Zayko & Ofer Kfir & Michael Heigl & Michael Lohmann & Murat Sivis & Manfred Albrecht & Claus Ropers, 2021. "Ultrafast high-harmonic nanoscopy of magnetization dynamics," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    15. Longjun Xiang & Hao Jin & Jian Wang, 2024. "Quantifying the photocurrent fluctuation in quantum materials by shot noise," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Bumseop Kim & Noejung Park & Jeongwoo Kim, 2022. "Giant bulk photovoltaic effect driven by the wall-to-wall charge shift in WS2 nanotubes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Song Bao & Zhao-Long Gu & Yanyan Shangguan & Zhentao Huang & Junbo Liao & Xiaoxue Zhao & Bo Zhang & Zhao-Yang Dong & Wei Wang & Ryoichi Kajimoto & Mitsutaka Nakamura & Tom Fennell & Shun-Li Yu & Jian-, 2023. "Direct observation of topological magnon polarons in a multiferroic material," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Jiaojian Shi & Haowei Xu & Christian Heide & Changan HuangFu & Chenyi Xia & Felipe Quesada & Hongzhi Shen & Tianyi Zhang & Leo Yu & Amalya Johnson & Fang Liu & Enzheng Shi & Liying Jiao & Tony Heinz &, 2023. "Giant room-temperature nonlinearities in a monolayer Janus topological semiconductor," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Piao, Rongzhen & Kim, Gi Woong & Chun, Booki & Oh, Taekgeun & Jeong, Jae-Weon & Yoo, Doo-Yeol, 2024. "Achieving thermoelectric properties of ultra-high-performance concrete using carbon nanotubes and fibers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    20. Martín-González, Marisol & Caballero-Calero, O. & Díaz-Chao, P., 2013. "Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 288-305.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48710-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.