IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p1006-d104866.html
   My bibliography  Save this article

Transverse Thermoelectricity in Fibrous Composite Materials

Author

Listed:
  • Bosen Qian

    (Department of Mechanical Engineering, Temple University, Philadelphia, PA 19122, USA)

  • Fei Ren

    (Department of Mechanical Engineering, Temple University, Philadelphia, PA 19122, USA)

Abstract

Transverse thermoelectric elements have the potential to decouple the electric current and the heat flow, which could lead to new designs of thermoelectric devices. While many theoretical and experimental studies of transverse thermoelectricity have focused on layered structures, this work examines composite materials with aligned fibrous inclusions. A simplified mathematical model was derived based on the Kirchhoff Circuit Laws (KCL), which were used to calculate the equivalent transport properties of the composite structures. These equivalent properties, including Seebeck coefficient, electrical conductivity, and thermal conductivity, compared well with finite element analysis (FEA) results. Peltier cooling performance was also examined using FEA, which exhibited good agreement to KCL model predictions. In addition, a survey was conducted on selected combinations of thermoelectric materials and metals to rank their transverse thermoelectricity with respect to the dimensionless figure of merit.

Suggested Citation

  • Bosen Qian & Fei Ren, 2017. "Transverse Thermoelectricity in Fibrous Composite Materials," Energies, MDPI, vol. 10(7), pages 1-11, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:1006-:d:104866
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/1006/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/1006/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamid Elsheikh, Mohamed & Shnawah, Dhafer Abdulameer & Sabri, Mohd Faizul Mohd & Said, Suhana Binti Mohd & Haji Hassan, Masjuki & Ali Bashir, Mohamed Bashir & Mohamad, Mahazani, 2014. "A review on thermoelectric renewable energy: Principle parameters that affect their performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 337-355.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Guo-neng & Zhang, Shuai & Zheng, You-qu & Zhu, Ling-yun & Guo, Wen-wen, 2018. "Experimental study on a stove-powered thermoelectric generator (STEG) with self starting fan cooling," Renewable Energy, Elsevier, vol. 121(C), pages 502-512.
    2. Gharehghani, Ayat & Rabiei, Moeed & Mehranfar, Sadegh & Saeedipour, Soheil & Mahmoudzadeh Andwari, Amin & García, Antonio & Reche, Carlos Mico, 2024. "Progress in battery thermal management systems technologies for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    3. Jang, Eunhwa & Banerjee, Priyanshu & Huang, Jiyuan & Madan, Deepa, 2021. "High performance scalable and cost-effective thermoelectric devices fabricated using energy efficient methods and naturally occuring materials," Applied Energy, Elsevier, vol. 294(C).
    4. Makki, Adham & Omer, Siddig & Sabir, Hisham, 2015. "Advancements in hybrid photovoltaic systems for enhanced solar cells performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 658-684.
    5. Enescu, Diana & Virjoghe, Elena Otilia, 2014. "A review on thermoelectric cooling parameters and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 903-916.
    6. Shun Kondo & Mana Kameyama & Kentaro Imaoka & Yoko Shimoi & Fabrice Mathevet & Takashi Fujihara & Hiroshi Goto & Hajime Nakanotani & Masayuki Yahiro & Chihaya Adachi, 2024. "Organic thermoelectric device utilizing charge transfer interface as the charge generation by harvesting thermal energy," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Wang, Cun-Hai & Chen, Hao & Jiang, Ze-Yi & Zhang, Xin-Xin & Wang, Fu-Qiang, 2023. "Modelling and performance evaluation of a novel passive thermoelectric system based on radiative cooling and solar heating for 24-hour power-generation," Applied Energy, Elsevier, vol. 331(C).
    8. Cai, Yang & Zhang, Dong-Dong & Liu, Di & Zhao, Fu-Yun & Wang, Han-Qing, 2019. "Air source thermoelectric heat pump for simultaneous cold air delivery and hot water supply: Full modeling and performance evaluation," Renewable Energy, Elsevier, vol. 130(C), pages 968-981.
    9. Kwan, Trevor Hocksun & Wu, Xiaofeng & Yao, Qinghe, 2018. "Multi-objective genetic optimization of the thermoelectric system for thermal management of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 217(C), pages 314-327.
    10. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    11. Kishore, Ravi Anant & Priya, Shashank, 2018. "A review on design and performance of thermomagnetic devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 33-44.
    12. Montero, Francisco J. & Kumar, Ramesh & Lamba, Ravita & Escobar, Rodrigo A. & Vashishtha, Manish & Upadhyaya, Sushant & Guzmán, Amador M., 2022. "Hybrid photovoltaic-thermoelectric system: Economic feasibility analysis in the Atacama Desert, Chile," Energy, Elsevier, vol. 239(PB).
    13. Kim, Deok Han & Park, Byung Ho & Kwon, Kilsung & Li, Longnan & Kim, Daejoong, 2017. "Modeling of power generation with thermolytic reverse electrodialysis for low-grade waste heat recovery," Applied Energy, Elsevier, vol. 189(C), pages 201-210.
    14. Dey, Abhijit & Bajpai, Om Prakash & Sikder, Arun K. & Chattopadhyay, Santanu & Shafeeuulla Khan, Md Abdul, 2016. "Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: A proficient move towards waste energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 653-671.
    15. Liu, Shuang & Hu, Bingkun & Liu, Dawei & Li, Fu & Li, Jing-Feng & Li, Bo & Li, Liangliang & Lin, Yuan-Hua & Nan, Ce-Wen, 2018. "Micro-thermoelectric generators based on through glass pillars with high output voltage enabled by large temperature difference," Applied Energy, Elsevier, vol. 225(C), pages 600-610.
    16. Xu, Bin & Rathod, Dhruvang & Yebi, Adamu & Filipi, Zoran & Onori, Simona & Hoffman, Mark, 2019. "A comprehensive review of organic rankine cycle waste heat recovery systems in heavy-duty diesel engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 145-170.
    17. Fitriani, & Ovik, R. & Long, B.D. & Barma, M.C. & Riaz, M. & Sabri, M.F.M. & Said, S.M. & Saidur, R., 2016. "A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 635-659.
    18. Mali, Vima & Saxena, Rajat & Kumar, Kundan & Kalam, Abul & Tripathi, Brijesh, 2021. "Review on battery thermal management systems for energy-efficient electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    19. Kim, Tae Young & Kim, Hee Kyung & Ku, Jae Won & Kwon, Oh Chae, 2017. "A heat-recirculating combustor with multiple injectors for thermophotovoltaic power conversion," Applied Energy, Elsevier, vol. 193(C), pages 174-181.
    20. Xudong Tao & Qianfang Zheng & Chongyang Zeng & Harry Potter & Zheng Zhang & Joshua Ellingford & Ruy S. Bonilla & Emiliano Bilotti & Patrick S. Grant & Hazel E. Assender, 2025. "Cu- or Ag-containing Bi-Sb-Te for in-line roll-to-roll patterned thin-film thermoelectrics," Nature Communications, Nature, vol. 16(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:1006-:d:104866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.