IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v588y2020i7839d10.1038_s41586-020-3028-8.html
   My bibliography  Save this article

Strongly correlated Chern insulators in magic-angle twisted bilayer graphene

Author

Listed:
  • Kevin P. Nuckolls

    (Princeton University)

  • Myungchul Oh

    (Princeton University)

  • Dillon Wong

    (Princeton University)

  • Biao Lian

    (Princeton University)

  • Kenji Watanabe

    (National Institute for Materials Science)

  • Takashi Taniguchi

    (National Institute for Materials Science)

  • B. Andrei Bernevig

    (Princeton University)

  • Ali Yazdani

    (Princeton University)

Abstract

Interactions between electrons and the topology of their energy bands can create unusual quantum phases of matter. Most topological electronic phases appear in systems with weak electron–electron interactions. The instances in which topological phases emerge only as a result of strong interactions are rare and mostly limited to those realized in intense magnetic fields1. The discovery of flat electronic bands with topological character in magic-angle twisted bilayer graphene (MATBG) has created a unique opportunity to search for strongly correlated topological phases2–9. Here we introduce a local spectroscopic technique using a scanning tunnelling microscope to detect a sequence of topological insulators in MATBG with Chern numbers C = ±1, ±2 and ±3, which form near filling factors of ±3, ±2 and ±1 electrons per moiré unit cell, respectively, and are stabilized by modest magnetic fields. One of the phases detected here (C = +1) was previously observed when the sublattice symmetry of MATBG was intentionally broken by a hexagonal boron nitride substrate, with interactions having a secondary role9. We demonstrate that strong electron–electron interactions alone can produce not only the previously observed phase, but also other unexpected Chern insulating phases in MATBG. The full sequence of phases that we observe can be understood by postulating that strong correlations favour breaking time-reversal symmetry to form Chern insulators that are stabilized by weak magnetic fields. Our findings illustrate that many-body correlations can create topological phases in moiré systems beyond those anticipated from weakly interacting models.

Suggested Citation

  • Kevin P. Nuckolls & Myungchul Oh & Dillon Wong & Biao Lian & Kenji Watanabe & Takashi Taniguchi & B. Andrei Bernevig & Ali Yazdani, 2020. "Strongly correlated Chern insulators in magic-angle twisted bilayer graphene," Nature, Nature, vol. 588(7839), pages 610-615, December.
  • Handle: RePEc:nat:nature:v:588:y:2020:i:7839:d:10.1038_s41586-020-3028-8
    DOI: 10.1038/s41586-020-3028-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-3028-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-3028-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pratap Chandra Adak & Subhajit Sinha & Debasmita Giri & Dibya Kanti Mukherjee & Chandan & L. D. Varma Sangani & Surat Layek & Ayshi Mukherjee & Kenji Watanabe & Takashi Taniguchi & H. A. Fertig & Arij, 2022. "Perpendicular electric field drives Chern transitions and layer polarization changes in Hofstadter bands," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Anushree Datta & M. J. Calderón & A. Camjayi & E. Bascones, 2023. "Heavy quasiparticles and cascades without symmetry breaking in twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. J. Díez-Mérida & A. Díez-Carlón & S. Y. Yang & Y.-M. Xie & X.-J. Gao & J. Senior & K. Watanabe & T. Taniguchi & X. Lu & A. P. Higginbotham & K. T. Law & Dmitri K. Efetov, 2023. "Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Ravi Kumar & Saurabh Kumar Srivastav & Ujjal Roy & Jinhong Park & Christian Spånslätt & K. Watanabe & T. Taniguchi & Yuval Gefen & Alexander D. Mirlin & Anindya Das, 2024. "Electrical noise spectroscopy of magnons in a quantum Hall ferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Qiaolu Chen & Zhe Zhang & Haoye Qin & Aleksi Bossart & Yihao Yang & Hongsheng Chen & Romain Fleury, 2024. "Anomalous and Chern topological waves in hyperbolic networks," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Le Liu & Shihao Zhang & Yanbang Chu & Cheng Shen & Yuan Huang & Yalong Yuan & Jinpeng Tian & Jian Tang & Yiru Ji & Rong Yang & Kenji Watanabe & Takashi Taniguchi & Dongxia Shi & Jianpeng Liu & Wei Yan, 2022. "Isospin competitions and valley polarized correlated insulators in twisted double bilayer graphene," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Maine Christos & Subir Sachdev & Mathias S. Scheurer, 2023. "Nodal band-off-diagonal superconductivity in twisted graphene superlattices," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Saisab Bhowmik & Bhaskar Ghawri & Youngju Park & Dongkyu Lee & Suvronil Datta & Radhika Soni & K. Watanabe & T. Taniguchi & Arindam Ghosh & Jeil Jung & U. Chandni, 2023. "Spin-orbit coupling-enhanced valley ordering of malleable bands in twisted bilayer graphene on WSe2," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Wenqiang Zhou & Jing Ding & Jiannan Hua & Le Zhang & Kenji Watanabe & Takashi Taniguchi & Wei Zhu & Shuigang Xu, 2024. "Layer-polarized ferromagnetism in rhombohedral multilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Jesse C. Hoke & Yifan Li & Julian May-Mann & Kenji Watanabe & Takashi Taniguchi & Barry Bradlyn & Taylor L. Hughes & Benjamin E. Feldman, 2024. "Uncovering the spin ordering in magic-angle graphene via edge state equilibration," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    11. Keshav Singh & Aaron Chew & Jonah Herzog-Arbeitman & B. Andrei Bernevig & Oskar Vafek, 2024. "Topological heavy fermions in magnetic field," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Daniel Shaffer & Jian Wang & Luiz H. Santos, 2022. "Unconventional self-similar Hofstadter superconductivity from repulsive interactions," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Si-yu Li & Zhengwen Wang & Yucheng Xue & Yingbo Wang & Shihao Zhang & Jianpeng Liu & Zheng Zhu & Kenji Watanabe & Takashi Taniguchi & Hong-jun Gao & Yuhang Jiang & Jinhai Mao, 2022. "Imaging topological and correlated insulating states in twisted monolayer-bilayer graphene," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    14. Canxun Zhang & Tiancong Zhu & Tomohiro Soejima & Salman Kahn & Kenji Watanabe & Takashi Taniguchi & Alex Zettl & Feng Wang & Michael P. Zaletel & Michael F. Crommie, 2023. "Local spectroscopy of a gate-switchable moiré quantum anomalous Hall insulator," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:588:y:2020:i:7839:d:10.1038_s41586-020-3028-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.