IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52053-7.html
   My bibliography  Save this article

Unipolar quantum optoelectronics for high speed direct modulation and transmission in 8–14 µm atmospheric window

Author

Listed:
  • Hamza Dely

    (CNRS)

  • Mahdieh Joharifar

    (KTH Royal Institute of Technology)

  • Laureline Durupt

    (2 Bd Thomas Gobert)

  • Armands Ostrovskis

    (Riga Technical University)

  • Richard Schatz

    (KTH Royal Institute of Technology)

  • Thomas Bonazzi

    (CNRS)

  • Gregory Maisons

    (2 Bd Thomas Gobert)

  • Djamal Gacemi

    (CNRS)

  • Toms Salgals

    (Riga Technical University)

  • Lu Zhang

    (Zhejiang University)

  • Sandis Spolitis

    (Riga Technical University)

  • Yan-Ting Sun

    (KTH Royal Institute of Technology)

  • Vjačeslavs Bobrovs

    (Riga Technical University)

  • Xianbin Yu

    (Zhejiang University)

  • Isabelle Sagnes

    (Centre de Nanosciences et de Nanotechnologies)

  • Konstantinos Pantzas

    (Centre de Nanosciences et de Nanotechnologies)

  • Angela Vasanelli

    (CNRS)

  • Oskars Ozolins

    (KTH Royal Institute of Technology
    Riga Technical University
    164 40)

  • Xiaodan Pang

    (KTH Royal Institute of Technology
    Riga Technical University
    164 40)

  • Carlo Sirtori

    (CNRS)

Abstract

The large mid-infrared (MIR) spectral region, ranging from 2.5 µm to 25 µm, has remained under-exploited in the electromagnetic spectrum, primarily due to the absence of viable transceiver technologies. Notably, the 8–14 µm long-wave infrared (LWIR) atmospheric transmission window is particularly suitable for free-space optical (FSO) communication, owing to its combination of low atmospheric propagation loss and relatively high resilience to turbulence and other atmospheric disturbances. Here, we demonstrate a direct modulation and direct detection LWIR FSO communication system at 9.1 µm wavelength based on unipolar quantum optoelectronic devices with a unprecedented net bitrate exceeding 55 Gbit s−1. A directly modulated distributed feedback quantum cascade laser (DFB-QCL) with high modulation efficiency and improved RF-design was used as a transmitter while two high speed detectors utilizing meta-materials to enhance their responsivity are employed as receivers; a quantum cascade detector (QCD) and a quantum-well infrared photodetector (QWIP). We investigate system tradeoffs and constraints, and indicate pathways forward for this technology beyond 100 Gbit s−1 communication.

Suggested Citation

  • Hamza Dely & Mahdieh Joharifar & Laureline Durupt & Armands Ostrovskis & Richard Schatz & Thomas Bonazzi & Gregory Maisons & Djamal Gacemi & Toms Salgals & Lu Zhang & Sandis Spolitis & Yan-Ting Sun & , 2024. "Unipolar quantum optoelectronics for high speed direct modulation and transmission in 8–14 µm atmospheric window," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52053-7
    DOI: 10.1038/s41467-024-52053-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52053-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52053-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kaiheng Zou & Kai Pang & Hao Song & Jintao Fan & Zhe Zhao & Haoqian Song & Runzhou Zhang & Huibin Zhou & Amir Minoofar & Cong Liu & Xinzhou Su & Nanzhe Hu & Andrew McClung & Mahsa Torfeh & Amir Arbabi, 2022. "High-capacity free-space optical communications using wavelength- and mode-division-multiplexing in the mid-infrared region," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Daniele Palaferri & Yanko Todorov & Azzurra Bigioli & Alireza Mottaghizadeh & Djamal Gacemi & Allegra Calabrese & Angela Vasanelli & Lianhe Li & A. Giles Davies & Edmund H. Linfield & Filippos Kapsali, 2018. "Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers," Nature, Nature, vol. 556(7699), pages 85-88, April.
    3. Borislav Hinkov & Florian Pilat & Laurin Lux & Patricia L. Souza & Mauro David & Andreas Schwaighofer & Daniela Ristanić & Benedikt Schwarz & Hermann Detz & Aaron M. Andrews & Bernhard Lendl & Gottfri, 2022. "A mid-infrared lab-on-a-chip for dynamic reaction monitoring," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Olivier Spitz & Andreas Herdt & Jiagui Wu & Grégory Maisons & Mathieu Carras & Chee-Wei Wong & Wolfgang Elsäßer & Frédéric Grillot, 2021. "Private communication with quantum cascade laser photonic chaos," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Jiang & Jintao Fu & Jingxuan Wei & Shaojuan Li & Changbin Nie & Feiying Sun & Qing Yang Steve Wu & Mingxiu Liu & Zhaogang Dong & Xingzhan Wei & Weibo Gao & Cheng-Wei Qiu, 2024. "Synergistic-potential engineering enables high-efficiency graphene photodetectors for near- to mid-infrared light," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Bo Hu & Xuemei Yang & Jiangen Wu & Siyi Lu & Hang Yang & Zhe Long & Linzhen He & Xing Luo & Kan Tian & Weizhe Wang & Yang Li & Han Wu & Wenlong Li & Chunyu Guo & Huan Yang & Qi Jie Wang & Houkun Liang, 2023. "Highly efficient octave-spanning long-wavelength infrared generation with a 74% quantum efficiency in a χ(2) waveguide," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Tuqiang Pan & Jianwei Ye & Haotian Liu & Fan Zhang & Pengbai Xu & Ou Xu & Yi Xu & Yuwen Qin, 2024. "Non-orthogonal optical multiplexing empowered by deep learning," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Mingjin Dai & Chongwu Wang & Bo Qiang & Yuhao Jin & Ming Ye & Fakun Wang & Fangyuan Sun & Xuran Zhang & Yu Luo & Qi Jie Wang, 2023. "Long-wave infrared photothermoelectric detectors with ultrahigh polarization sensitivity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52053-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.